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Abstract

The Shodan search engine reveals Industrial Control System (ICS) devices around

the globe are directly connected to the Internet. After Shodan’s inception in 2009, multiple

news reports have focused on the increased threat to infrastructure posed by Shodan. While

no attacks to date have been directly attributed to Shodan searches, its existence provides

an anonymous reconnaissance platform that facilitates ICS targeting for those actors with

both a desire and capability to carry out attacks. Recent research has demonstrated that

simple search queries return thousands of ICS devices indexed by Shodan, and the number

of newly indexed ICS devices is growing. This research discusses the method used to

distinguish the Internet-facing ICS devices indexed by the Shodan search engine. PLC code

is obtained by sending specifically crafted CIP request messages to the devices, capitalizing

on the fact that authentication is not built in to the CIP application layer protocol. This data

allows categorization of Internet-facing devices by comparing PLC code attributes. The

results of this research show PLC code can be collected from Internet-facing ICS devices

with no significant impact to task execution times. Also, this research demonstrates a

method to distinguish Internet-facing ICS devices by function and by Critical Infrastructure

sector. This capability develops an understanding of the function and purpose of ICS

devices that are being connected to the Internet.
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DISTINGUISHING INTERNET-FACING ICS DEVICES USING PLC

PROGRAMMING INFORMATION

I. Introduction

The Shodan search engine maintains a database of devices connected to the Internet. It

works by indexing the response messages for a variety of protocols for each public

Internet address. While there have been many reports in the press that Shodan increases risk

to Critical Infrastructure [22], no recent research has attempted to distinguish the Industrial

Control System (ICS) that Shodan indexes. This research examines a non-invasive method

to distinguish ICS devices based on Programmable Logic Controllers (PLC) programming

information. Allen-Bradley RSLogix 5000 PLCs use tags in PLC code to label variables.

These tags can be obtained by sending Common Industrial Protocol (CIP) requests for

code attributes and parsing the results. This research demonstrates the ability to use

tags to distinguish ICS devices indexed by Shodan based on function, and using industry

experts, further distinguish those devices by industrial sector. This chapter describes the

problem statement, scope, and methodology used to determine the metrics and methods

required to obtain the necessary information from Internet-facing ICS devices that permits a

classification based on function. This chapter concludes with an overview of the subsequent

chapters included in this thesis.

1.1 Problem Statement

The National Institute of Standards and Technology (NIST) has published regulations

regarding the safe and secure implementation of ICS networks [20]. In the NIST guidelines,

it is clear that no ICS devices should be connected to the Internet, either by means of a

1



public Internet Protocol (IP) address or by forwarding public address space to a private

address using Network Address Translation or Port Address Translation (NAT/PAT). Many

industry experts have developed a false sense of security, believing their networks are safe

from attack because they are not connected to the Internet [22]. However, Shodan has

demonstrated that ICS devices are, in fact, connected to the Internet. Recent research

has sought to enumerate ICS devices indexed by Shodan, and the results show Shodan

continues to index more ICS devices as time continues [22]. To date, no research has been

conducted that attempts to determine the function of those Internet-facing ICS devices. The

goal of this research is to distinguish Internet-facing ICS devices indexed by Shodan.

To accomplish the research goal, data collection methods are tested in a controlled

environment to ensure that Internet-facing ICS devices are not interrupted by the collection

process. Reverse engineering techniques are used to write scripts in the Python language

that craft application layer request messages for each PLC. The responses to those requests

contain PLC code that contains Task, Program, Routing and Tag names along with tag data

types. Next, testing on four different Allen-Bradley PLC Central Processing Units (CPUs)

is conducted to measure PLC performance during the request/response process. Finally,

the PLC code is visually inspected for process control terms to indicate if an ICS device

is used to control a process. The results of this inspection are ICS devices classified as

Process Control or Indeterminate.

1.2 Scope, Assumptions and Limitations

The scope of this research is limited in the type of ICS device tested and data sets

available for analysis. This research builds on recent work using Allen-Bradley PLCs to

detect changes to PLC code execution times and to detect changes in interaction with a

PLC after it is indexed by Shodan. For this reason, a Shodan search query is used to obtain

a pool of Allen-Bradley CompactLogix and ControlLogix family PLCs. From this device

2



pool, controlled testing is conducted on four different Allen-Bradley CPUs: 1756-L61,

1756-L71, 1769-L23E, and 1769-L32E.

The implementation of this research collects PLC code from Allen-Bradley PLCs that

are connected to the Internet. The results from those collections are analyzed individually.

This research does not attempt to look at similarities in PLC code among the sample

population or look at contiguous IP space in order to identify systems of systems.

A set of municipal wastewater PLC project files are used for static analysis, providing

a set of Program, Routine, and Tag data representing PLCs currently in use in Critical

Infrastructure. These project files are from one small geographic area within the United

States and from one Critical Infrastructure sector, and therefore not representative of a

larger population.

Limitations to this research effect the types of Allen-Bradley PLCs available for testing

and the data available for static analysis of PLC code. Allen-Bradley RSLogix5000 PLCs

are used in this research as the RSLogix500 PLCs such as the MicroLogix family do not

use tags to handle PLC code variables. Static analysis is also impacted by the small,

geographically localized set of available PLC project files.

1.3 Approach

Collecting PLC code form Internet-facing ICS devices must not impact the device’s

operation. Impact is defined as a statistically significant increase in task execution time.

Experimentation on ICS devices in a controlled environment provides the means to develop

non-invasive data collection methods and measure performance metrics to determine

impacts those collection methods have on ICS devices. The goal of this research is to

distinguish Internet-facing ICS devices based on PLC programming information. This

research accomplishes this goal by obtaining a list of Internet-facing ICS devices, collecting

PLC code, and classifying devices by matching process control terms with the names used

by ICS engineers to write PLC code.

3



The Shodan search engine indexes devices in the same manner that Google indexes

web pages. Shodan requests service information for a specific IP and port, and indexes the

response message. Carefully crafted Shodan search queries are used to obtain IP addresses

for devices with matching service response messages. This is the method this research uses

to obtain a list of Allen-Bradley PLCs indexed by Shodan.

Collecting PLC code from ICS devices makes use of CIP Get Attribute List messages

that return Task, Program, and Routine names along with names and data types for Global

and Program-specific tags. The RSLogix5000 software uploads PLC code from the device

by making several CIP requests for class and instance values for Task, Program, Routime,

and Tag values. Reverse engineering these requests using Wireshark captures, it is possible

to create CIP requests replicating certain parts of the upload process, obtaining PLC code

without using RSLogix5000. Once pilot testing confirms that the Python scripts are

able to collect PLC code from an ICS device, testing is conducted measuring the task

and system process execution times to ensure ICS device performance is not negatively

impacted. During this testing, four different PLC CPUs are tested, each with three firmware

versions. The firmware versions are selected according to firmware versions obtained

during exploratory testing. For each CPU, it is tested with three firmware versions ranging

from oldest to newest found on Internet-facing devices. Once PLC code is collected, each

response is categorized based on attributes found in the PLC code.

Finally, a visual inspection of the PLC code collected from Internet-facing PLCs is

conducted to match the names of Tasks, Programs, Routines, and Tags with a list of process

control terms common across multiple Critical Infrastructure sectors.

1.4 Overview of Subsequent Chapters

The remainder of this thesis describes in detail the background, testing, and results

of distinguishing Internet-facing ICS devices indexed by Shodan. Chapter 2 discusses

the types of ICS devices and networks in use today along with the relevant research into
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Shodan and Internet-facing ICS devices. Chapter 3 details the methodology used to develop

methods to obain data from Internet-facing ICS devices, ensuring PLC task execution is

not negatively impacted. Chapter 4 describes the results of testing and implementing the

research methodology. Finally, Chapter 5 states the research conclusions and future work

that can be conducted to further classify Internet-facing ICS devices.
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II. Background

Industrial control systems (ICS) are used by corporations and municipalities to operate

and maintain critical infrastructure providing essential services such as electric power

distribution and wastewater management [20]. ICS systems operate by means of an

interconnected network of devices to make automated and human assisted decisions

affecting the operation of attached mechanical actuators and sensors. Despite governmental

and industry efforts to standardize secure ICS implementations, compliance with security

recommendations and industry best practices like those cited in the National Institute of

Standards and Tehcnology (NIST) Guide to Industrial Control Systems are still voluntary

[20]. The critcal nature of these systems combined with a lack of security focus make ICS

networks interesting and vulnerable targets for attackers.

Security managers believe segregating their ICS networks from the Internet provided

a sufficient level of security [22]. In 2009, however, the Shodan search engine showed

that against NIST security guidelines, ICS devices are in fact connected to the Internet.

The Shodan search engine indexes these devices and provides a reconnaissance platform to

passively identify ICS devices.

Recent research has shed new light on the ICS attack surface by indexing and

cataloging ICS devices connected to Internet-facing IP addresses [19][22]. The purpose

of this chapter is to define the components and methods used to implement ICS systems

and also review current research demonstrating ways and means to interact with Internet-

facing ICS devices.

Section 2.1 describes in detail the hardware, software, and communications networks

that make up Industrial Control Systems. Section 2.2 discusses the Shodan search engine

and recent research focusing on enumerating ICS devices indexed by Shodan. Section 2.3

describes the risks posed to ICS networks by attackers and provides examples of recent
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attacks on Critical Infrastructure. Finally, section 2.4 covers recent research methods to

measure CPU performance in ICS devices under test.

2.1 Critical Infrastructure and Industrial Control Systems

The Department of Homeland Security (DHS) defines Critical Infrastructure as the

“assets, systems, and networks, whether physical or virtual, so vital to the United

States that their incapacitation or destruction would have a debilitating effect on security,

national economic security, national public health or safety, or any combination thereof.”

DHS assumes the responsibility of protecting what it calls Critical Infrastructure and

Key Resources (CIKR) [8][9]. DHS divides CIKR into 16 different sectors divided by

functionality: financial, chemical, commercial, communications, manufacturing, dams,

defense industrial base, education, emergency services, energy, food and agriculture,

healthcare, national monuments and icons, nuclear reactors and materials, transportation,

and water.

Industrial Control Systems can be divided into three components as shown in Figure

2.1: Human-Machine Interface (HMI), Remote Diagnostics and Maintenance Utilities, and

the Control Loop consisting of Controllers, Actuators, Sensors, and a Controlled Process

[20].

The control loop refers to the sensors, transmission methods, and controllers

that operate at the lowest level of the ICS. Controllers such as Programmable Logic

Controllers (PLCs) receive information from sensors and make decisions based on set

points programmed into the PLC. For example, a PLC receives a specific voltage level

from a temperature sensor and, based on that information, causes an actuator to open a

cooling valve. The PLC also sends information to an HMI and a data historian for human

observation and logging. HMIs are the devices that monitor and display information for a

ICS which allows a central control room staffed by human operators to monitor data and
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Figure 2.1: ICS Operation Function Blocks [20].

configure the PLC’s parameters when required. Remote maintenance systems are used in

ICS for preventing and recovering from equipment failures.

2.1.1 SCADA network architectures.

There are many different network topologies that support Supervisory Control and

Data Acquisition Systems (SCADA) software and hardware design. This research will

focus on an architecture using IP-based communications protocols and replicates SCADA

architectures recommended by industry and governmental agencies.

Figure 2.2 is just one example of a SCADA architecture that generalizes how SCADA

control and communications devices are interconnected to form a SCADA network [1]. The

common components in any SCADA architecture are the topology, transmission systems,

and control components.
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Figure 2.2: Example SCADA Architecture [1].

There are varying terminologies used to describe a SCADA topology which are

depicted in Figure 2.3. The NIST Guide to ICS Security provides an example of four

SCADA topologies: point to point, series, series-star, and multi-drop [20]. Point-to-point

topologies typically use serial communications instead of the IP-based communications

focused on in this research. Series, series-star, and multi-drop are used to network multiple

field devices on a shared medium with the SCADA server.

Rockwell Collins defines their topologies as point to point and point to multipoint

(multi-drop). Rockwell Collins identifies point to multipoint as the main topology used in

SCADA networks. The multipoint (multidrop) topology connects several field devices to a

SCADA server through a central hub. The entire SCADA system is interconnected through

IP-based Local Area Network (LAN) and Wide Area Network (WAN) links creating the
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Figure 2.3: NIST SCADA Communication Topologies [20].

final design architecture as depicted in the NIST Guide to ICS Security shown in Figure

2.4.

SCADA architectures use a variety of transmission systems to connect the control

center to field sites. These connections can be accomplished using serial connections,

modem connections, WAN and LAN shared media connections, or wireless radio. Electric

power distribution SCADA systems are geographically disperse and often utilize many

different transmission methods such as Ethernet, dial-up/leased line serial connections,

wireless IP and wireless radio [1]. Each of these systems use appropriate transmission

protocols such as Modbus/TCP and DNP3 to format and send data over the transmission
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Figure 2.4: NIST Guide to ICS Security SCADA System Implementation Example [20].

medium used in a SCADA topology. The control components used in a SCADA system use

the topology design and transmission medium to send and receive data within a network.

2.1.2 ICS Components.

ICSs are typically categorized as SCADA or Distributed Control Systems (DCS) based

on their topology and purpose. SCADA systems are geographically dispersed systems

with numerous field sites sending data to a central data historian, while DCS systems

are normally configured to operate within a confined plant-centric area [20]. In SCADA

systems, control devices such as PLCs are primarily used to supervise and monitor the state

of an attached physical device, where PLCs in DCS systems typically control systems that

execute mechanical operations.
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SCADA components are separated into the control components and network

components. These components allow SCADA systems to exchange real-time data

between a centralized control center and field devices [18]. The control station is normally

populated with any combination of control servers, Master Terminal Units (MTU), Human-

Machine Interfaces (HMI), data historians, and Input/Output Servers [20]. The control

server, Input/Output (I/O) server, MTU, and HMI can be separate systems or consolidated

in a few physical devices. They make up the means for operators in the control center

to monitor and remotely configure field devices. The HMI is comprised of software and

hardware that allows operators to view the status of field devices, make changes to set

points or algorithms, and override the commands of field devices when necessary. The

Control Server hosts the control software that communicates with field devices, the I/O

Server provides a method to communicate with field devices, and the MTU works with field

devices in a master/slave configuration to implement changes made at the control center.

The Data Historian is a centralized database server that logs all process information within

the SCADA system for auditing, data analysis, and future planning.

These ICS field devices communicate with the control center and are responsible

for monitoring and executing instructions based on their configured algorithms and set

points. The PLC is a versatile control module that can be populated with special purpose

modules to carry out a wide range of tasks. The PLC has the capability to logically control

complex tasks by receiving feedback from an attached sensor and make decisions based on

its programmed algorithm to maintain or change the state of an attached physical device.

PLCs used in SCADA systems are the most versatile and configurable of the field

devices, capable of performing all supervisory control and data acquisition functions as

other field devices [20]. Kalapatapu [18] describes how an RTU’s use of communication

protocols over wireless transmission systems is similar to PLC communications over

wire medium using the same protocols. Siemens and Rockwell Collins are two of the
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largest manufacturers of PLCs, with the Germany-based Siemens focusing on European

markets and Rockwell Collins being the largest manufacturer based in the United States

[30]. Rockwell Collins manufactures Allen-Bradley PLCs which are represented in nearly

every Critical Infrastructure sector and have a 30 percent share of the North American

electrical utilities market. The Allen-Bradley Logix 5000 series PLCs consist of a power

supply, communications backplane, and 1756-A7 chassis with up to 7 slots for add-on

modules. The PLC uses ARM processors for control and backplane communications.

The control module houses the processors, memory, slot for flash memory and an RS-

232 communications port. The remaining slots in the PLC are populated with I/O modules

based on specific tasks the PLC is required to perform. Examples of these modules are

analog and DC input modules used to read voltage levels from sensors which the PLC then

converts into digital information used as input in execution of a task.

Figure 2.5: Allen-Bradley ControlLogix PLC Architecture [25].

13



2.1.3 Allen-Bradley Industrial Control Systems.

The Allen-Bradley ControlLogix family of PLCs shown in Figure 2.5 consists of a

chassis, controller, communications module, and a number of optional modules providing

additional functionality such as I/O [25]. The standard controllers for ControlLogix PLCs

are the L6x and L7x series. These controllers can be populated in any chassis slot, and

multiple controllers can be installed and operate simultaneously in a ControlLogix chassis.

The primary difference between the L6x and L7x controllers is the built-in communications

architecture. The L6x controller provides an RS-232 serial communications capability

while the L7x controller has a built-in USB port. Allen-Bradley varies the amount of user

memory within each series from 2MB on the L61 controller to 32MB on the L65 controller.

Both controllers are used to execute PLC code and communicates with additional modules

via the ControlLogix chassis backplane.

Ethernet / Industrial Protocol (EtherNet/IP) describes the Ethernet Industrial Protocol

used by Allen-Bradley for PLC real-time messaging and I/O communications over IP-

based networks as shown in Figure 2.6 [25]. The EtherNet/IP modules available for use

in Allen-Bradley PLCs include an integrated web server that provides device configuration

and communications data. Allen-Bradley recommends using the communications statistics

provided by a Diagnostic Web Page shown in Figure 2.7. The web page is hosted by the

EtherNet/IP module and is provided for troubleshooting PLC communication issues. The

statistics provide a means to obtain current device state and communication capabilities by

means of making a Hypertext Transfer Protocol (HTTP) GET request to the device’s IP

address.

The CompactLogix family of PLCs shown in Figure 2.8 provides a compact,

integrated PLC solution that uses the same RSLogix common programming platform as

the ControlLogix family [27]. The CompactLogix platform is built around an integrated
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Figure 2.6: Allen-Bradley EtherNet/IP Architecture [25].

backplane, CPU, and communications module providing control and communications

services for a range of I/O options. The 1769-L23x series provides embedded I/O functions

in the device and limited expansion options. The 1769-L3x series increases options for

onboard user memory and increases the number of possible add-on modules. Both use

integrated serial communications or EtherNet/IP for communications with other devices or

the RSLogix control software.
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Figure 2.7: EtherNet/IP Module Web Server.

PLCs are programmed using one of the languages listed in the International

Electrotechnical Commission (IEC) published standard IEC 61131-3. This standard

describes the graphical and text-based programming languages which are used to provide

logical decision-making for programmable controllers [20]. The Allen-Bradley Logix

5000 series PLCs conform to the IEC 61131-3 standard and uses a proprietary Studio

5000 Engineering and Design Environment to facilitate graphical program design and

implementation [26].

RSLogix 5000 is a software application from Allen-Bradley that provides program-

ming, control, and troubleshooting services for their PLCs [24]. RSLogix 5000 provides

a graphical interface to build and monitor ladder logic, which is a type of PLC code sup-

ported by Allen-Bradley PLCs. RSLogix 5000 uses tags as variables within ladder logic.

Tags can be thought of as any other programming variable, having assigned names and data
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Figure 2.8: Allen-Bradley CompactLogix PLC Architecture [27].

types. Ladder logic instructions can use tags to make decisions, such as monitoring a tag

as a setpoint.

RSLogix 5000 also provides real-time monitoring for ladder logic execution, and

provides a suite of tools useful for troubleshooting [23]. RSLogix Task Monitor shown

in Figure 2.9 which monitors and logs the PLC state during ladder logic execution. Task

Monitor tracks operating statistics such as CPU Utilization and ladder logic execution

times. Task Monitor collects data from the PLC by sending requests for execution times

to the PLC at a user-defined interval. The PLC returns in microseconds the execution

times for system processes and all tasks executing in ladder logic. This allows Task

Monitor to calculate CPU Utilization and track the load on system services, such as the

communications service.
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Figure 2.9: RSLogix Task Monitor.

The PLC firmware is the layer between logic and PLC hardware that implements

logical operations in PLC code on the PLC itself. Allen-Bradley provides a support site

where firmware feature sets and compatibility can be checked as in Figure 2.10, and

firmware can be downloaded once an e-mail address is registered with Allen-Bradley

through an online sign-up page.

18



Figure 2.10: Allen-Bradley Firmware Feature Comparison.

2.1.4 ICS Protocols.

A PLC makes decisions and executes code once all appropriate modules, firmware,

and PLC code is loaded and configured. During operation, PLCs need to communicate

to other field devices and HMIs for real-time information reporting and control. ICS

protocols such as EtherNet/IP and CIP allow PLCs to communicate using an industry

standard protocol which allows PLCs to communicate over any Transmission Control

Protocol/Internet Protocol (TCP/IP) network.

CIP is an open industry standard application layer protocol managed by ODVA, Inc.

that allows PLCs to communicate using a variety of ICS networking technologies such as

DeviceNet, ControlNet, CompoNet, and EtherNet/IP [31]. CIP uses a producer-consumer

model which allows PLCs to publish tag data and attributes to multiple consumers. CIP

identifies messages by Connection IDs instead of source/destination address which allows

multiple devices to make a single request for a Connection ID. Attribute messages are

published for all consumers who have made a request to the Connection ID eliminating the

need for multiple devices to initiate individual requests for tag attributes [2].

19



Figure 2.11 shows a CIP message requesting a list of attributes for an Identity Object

using class and instance values. Identity Objects are objects with common attributes,

separated by class [6]. CIP provides some pre-defined public classes along with the ability

to define vendor specific classes in the Class ID range 100-199. An example of an Identity

Object is shown in Figure 2.12.

Figure 2.11: Common Industrial Protocol - Object Oriented Formatting.

EtherNet/IP is an ICS communications protocol operating at layers 1-4 of the Open

Systems Interconnection (OSI) model allowing CIP messages to route over IP networks.

EtherNet/IP at the transport layer segments CIP messages using Transmission Control

Protocol (TCP) or User Datagram Protocol (UDP) protocols based on the CIP message

type. EtherNet/IP uses TCP for explicit CIP messages such as the Get Attribute List

request shown in Figure 2.11 [2]. TCP is a connection-oriented protocol that ensures
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Figure 2.12: Common Industrial Protocol - Identity Object Attributes.

delivery of the message. EtherNet/IP uses UDP to transmit real-time information such

as I/O messages. UDP is connection-less, but it is faster and smaller than TCP and suitable

for time-sensitive transmissions. EtherNet/IP also provides a mechanism to establish

connections between devices through a Connection Manager shown in Figure 2.13 [6]. CIP

connections define packets that are produced and transmitted over a given network. Explicit

messaging handles the routine produce and consume messages, assigning Connection IDs

for produced information and handling the messaging to consumers. Implicit messaging

refers to the time-sensitive I/O information transmitted via UDP by EtherNet/IP. The

Unconnected Message Manager handles communication requests for routine information

such as Identity Object attributes without establishing Connection IDs. This reduces the

communications overhead for infrequent or routine requests by eliminating the need to

establish connections and reserve resources through the Connection Manager.

2.2 The Shodan Search Engine

Vice magazine in 2013 published an article called “Is Shodan really the world’s

most dangerous search engine?” [7]. In 2009, the Shodan search engine was placed into

operation and provided proof that ICS networks around the globe were directly connected

to the Internet by means of PLCs using public-facing IP addresses [13]. Recent research

has developed techniques to quantify the problem and continues to discover more public-
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Figure 2.13: Common Industrial Protocol Object Model [6].

facing ICS devices. Much is being done to raise the alarm about the quantity of ICS

devices connected to the Internet, but not much is being done to determine the function

those devices perform.

Shodan was created by John Matherly in order to map software deployments across the

internet to assist developers determine what systems were connected to the Internet [17].

The utility of Shodan became clear to researchers, security experts, and hackers alike [7]

and Shodan became a tool to find all types of hardware and software using public-facing IP

addresses. In 2009, Elian Leverett published his methodology using Shodan to determine

the IP addresses of over 7,500 public-facing ICS devices.

Matherly started indexing banner messages on a Dell computer in his free time,

cataloging messages at a rate of 10,000 per month [7]. His intent to conduct world-

wide banner grabbing was to allow companies to track deployment of their hardware and
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software. Shodan works by randomly selecting a public IP address, then interrogating a set

of well-known ports for that IP shown in Table 2.1, indexing any banner messages returned.

Table 2.1: Ports and services indexed by Shodan [4].

Shodan Port Filters

Port Service Port Service Port Service Port Service

21 FTP 143 IMAP 1900 UPnP 6379 Redis

22 SSH 161 SNMP 2323 Telnet 7777 Oracle

23 Telnet 443 HTTPS 3306 MySQL 8000 Qconn

25 SMTP 445 SMB 3389 RDP 8080 HTTP

53 DNS 465 SMTP 5000 Synology 8129 Snapstream

80 HTTP 623 IPMI 5001 Synology 8443 HTTPS

81 HTTP 993 IMAP + SSL 5432 PostgreSQL 9200 ElasticSearch

110 POP3 995 POP3 + SSL 5560 Oracle 11211 MemCache

119 NNTP 1023 Telnet 5632 PC Anywhere 27017 MongoDB

137 NetBIOS 1434 MS-SQL 5900 VNC 28017 MongoDB Web

“I don’t consider my search engine scary...It’s scary that there are power plants

connected to the Internet” [17]. Any user can query Shodan’s database and receive up

to 10 results for free. Alternatively, users can register and pay a $20 fee to have access to

10,000 results per search query. Some articles on Matherly have hinted that this provides a

layer of insulation between Shodan and a black-hat hacker; however, Matherly states in the

Vice article that the subscription service allows him to devote more assets to Shodan and

now indexes “hundreds of millions a month.”

In 2010, Michael Schearer presented his work “Shodan for Penetration Testers” at

DEFCON 18 [28]. Schearer began his talk by describing methods used to craft search
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queries and utilize Shodan’s filters to narrow results by port, protocol, service, or even

geographic location. Schearer educated his audience in the art of using Shodan for network

reconnaissance by finding networking devices with default credentials (or no authentication

at all). Schearer was able to gain the highest access level (level 15) to an Internet Service

Provider’s (ISP) distribution switch and determine sensitive configuration information used

by the ISP.

At DEFCON 20, Dan Tentler delivered a presentation on Shodan where he showed a

city’s traffic control system was indexed along with a hydroelectric power plant’s control

system [13]. This demonstrates Shodan’s direct and potentially dangerous relationship with

Critical Infrastructure and the ability for anyone to conduct passive reconnaissance on the

ICS networks supporting CI.

2.2.1 Discovering Indexed ICS Devices.

In June 2011, Eireann Leverett completed his research titled “Quantitatively Assessing

and Visualizing Industrial System Attack Surfaces” [19]. Leverett’s motivation was to

disprove the common assumption that ICS devices were safe from attack because they were

only connected to internal, private networks. “Vendors say they don’t need to do security

testing because the systems are never connected to the internet; it’s a very dangerous claim.”

[35]. Leverett crafted 29 Shodan queries in order to identify ICS devices by specific strings

contained in the banner messages indexed by Shodan shown in Figure 2.14 from Leverett’s

work.

Leverett’s research produced a tool that visualizes ICS devices by location to show

that vulnerable Internet-facing ICS devices are connected worldwide. He presented his

findings to several industry professionals including Industrial Control System - Computer

Emergency Response Team (ICS-CERT), and continues to give talks on ICS categorization

using Shodan.
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Figure 2.14: Leverett search query results [19].

When looking at Leverett’s research in the context of risk to Critical Infrastructure, it

is important to note that Leverett’s research does not categorize ICS devices by function or

industry sector. This leads some to conclude that the large number of ICS devices indexed

by Shodan can be correlated to an increased risk to Critical Infrastructure. In 2012 during a

talk at the Digital Bond SCADA Security Scientific Symposium (S4), Dale Peterson raised
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a question about determining risk to Critical Infrastructure. Leverett’s response showed

the lack of research in this area: “Dale may be right here, the amount of truly ‘critical’

infrastructure is likely to be low in this data set” [21].

2.2.2 Project SHINE.

Project SHINE, the product of Rob Radvanovsky and Jake Brodsky, uses Shodan to

catalog Internet-facing ICS devices in similar fashion to Leverett’s work [15]. Shodan

Intelligence Extraction (SHINE) began around the same time as Leverett and produced

similar results. According to Radvanovsky, SHINE “began ingesting raw data mid-

April 2012...to determine a baseline of just how many SCADA/ICS devices and software

products are directly connected to the Internet” [22].

Where Leverett developed his thesis in an academic environment, the security

professionals behind Project SHINE do not share Leverett’s openness or willingness to

share results. Radvanovsky states Project SHINE has categorized a list of over 1,000,000

unique IP addresses appearing to belong to SCADA/ICS devices and typically finds an

additional 2,000-8,000 per day. He stated this in September 2013, implying he has

discovered another half-million devices. Radvanovsky says SHINE is able to find such

a large number of devices using “just shy of 700 searchable terms and (we) are adding

more every week” [22].

Radvanovsky continues to collect data on Internet-facing ICS devices, and has stated

that they “intend to perform our own...scans...through a new (undisclosed) method in the

not-too-distant-future” [22]. A motive behind Radvanovsky’s secrecy may be financial;

“we may make available SHINE data to be used as part of a compliance service for asset

owners, but we are struggling with an appropriate business model” [22].

2.3 Security Concerns and ICS Attacks

Recent events highlight the significant capabilities of state and non-state actors to

carry out attacks on Critical Infrastructure. Stuxnet is a widely known example of malware
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creating devastating physical effects. Stuxnet modified PLC code on a Siemens device

and reports false information to the Siemens control software in an effort to mask the new

PLC code that damages the targeted nuclear centrifuges [11]. Stuxnet is remarkable in

the complexity of the code and the way it seeks out a very specific target. The Stuxnet

developers have never been discovered. However, it is generally accepted to be part of a

US program to intervene in the Iranian Nuclear program.

To demonstrate the desire to attack critical infrastructure using cyber exploits, an

example emerged three decades before Stuxnet in the Trans-Siberian Pipeline [32]. The

Central Intelligence Agency (CIA) used Soviet officer Colonel Vladimir I. Vetrov to

facilitate a known Soviet plot to use a shadow company to illegally obtain banned

technology. The CIA, Department of Defense (DoD), and Federal Bureau of Investigation

(FBI) conducted an undercover operation which sold modified equipment to the Soviets

through their shadow company. According to the CIA’s report on The Farewell Dossier,

“Contrived computer chips found their way into Soviet military equipment, flawed turbines

were installed on a gas pipeline, and defective plans disrupted the output of chemical

plants and a tractor factory” [32]. The resulting sale of sabotaged devices is believed to

have caused an explosion on the Trans-Siberian pipeline in 1982. While some dispute the

explosion was caused by CIA actions, it is a clear demonstration of an intent to carry out

cyber attacks on critical infrastructure dating back thirty years.

The Darkreading.com IT security news portal has reported several recent exploits

and attacks focusing on ICS devices and networks. In 2012, Kelly Higgins reported on

backdoor exploits that target Siemens PLCs allowing the capture of passwords and ability

to manipulate PLC code [14]. The same article described the addition of ICS exploits into

the Metaspoit Framework and an electric utility that had experienced unsuccessful brute

force logon attempts through the Secure Shell (SSH) service.
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Higgins has written several articles highlighting recent attacks on the Oil and Gas

sector. In 2012, the Saudi Aramco oil and natural gas company had 30,000 computers on

their corporate network infected and damaged by a piece of malware called Shamoon [3].

Shamoon is a version of W32.Disttrack destructive malware that writes over the Master

Boot Records of hard drives, rendering the machine inoperable.

In 2014, Higgins wrote about a group called STTEAM using a “mix of hacktivist,

nation-state, and pure cybercrime techniques” against oil and gas companies in the Middle

East [16]. The STTEAM attacks show an increased sophistication from the Shamoon

malware. Shamoon seemed to be poorly written and was able to be quickly removed

from the Saudi Aramco network by replacing all 30,000 hard drives. STTEAM shows

an intent to become a persistent threat to the systems they attack by using several powerful

ASP backdoor scripts to allow attackers entry into the target network and remotely execute

commands [12].

These recent attacks demonstrate the advanced capabilities available to exploit and

attack critical infrastructure. This section has shown examples of a desire to attack critical

infrastructure and increased exploits to carry out attacks. Shodan provides those with a

desire to attack critical infrastructure an advanced reconnaissance capability to discover and

collect targeting information on Internet-facing ICS devices. Since Leverett’s work in 2011,

the number of Internet-facing devices indexed in his work has risen as shown in Figure 2.15

[19]. Along with the devices discovered by Leverett’s search terms, more specific terms

are able to discover a larger number of Internet-facing ICS devices, all without having to

interrogate the target devices directly.

2.3.1 TrendMicro Reports on ICS Attakers.

In 2013, SCADA security researcher Kyle Wilhoit published two papers with

TrendMicro titled ‘Whos Really Attacking Your ICS Equipment?’ [33] and ‘The SCADA

That Didnt Cry Wolf. Whos Really Attacking Your ICS Equipment? (Part 2)’ [34]. In the
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Figure 2.15: Comparison of Leverett search query results obtained in 2011 and 2013 [5].

first publication, Wilhoit describes his effort to identify SCADA attacks though the use of

Internet-facing SCADA honeypots. Wilhoit used an actual PLC, PLC software running on

Amazon Cloud, and a web server mimicking an ICS web server, all on different static IPs

registered in the United States. Wilhoit provided a definition of threat in the paper:
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‘We define an attack as anything that may be deemed a threat to Internet-

facing ICS/SCADA systems. This includes unauthorized access to secure areas

of sites, modifications on perceived controllers, or any attack against a protocol

specific to ICS/SCADA devices like Modbus. In addition to classifying these

attempts as attacks, we also consider any attempt to gain access or cause an

incident to the server in a targeted fashion attacks [34].’

In 28 days, the honeypots Wilhoit identified 39 attacks 12 of which Wilhoit described as

targeted.

Wilhoit’s second paper revisited the honeypot configuration. He developed a more

robust honeypot architecture that closely replicated an actual SCADA system, including

Modbus modules, PLCs, HMIs and other ICS systems. Wilhoit deployed 12 honeypots

worldwide across 8 countries, taking care to use local language to make each deployment

more realistic. In a four month period, Wilhoit’s honeynet saw 74 attacks, 10 of which

Wilhoit classified as critical. Six of those critical atacks triggered Snort IDS signatures

developed by DigitalBond to monitor unauthorized Modbus traffic.

Wilhoit’s research does not fully explain the nature of reported ICS attacks. Many of

the generic attacks seen by Wilhoit were not targeting ICS field devices, but instead were

targeting workstations used as HMIs. He did not describe what critical attacks are or if

they were successful. In his second paper, he gives only one example of a targeted attack

discovered during his earlier research. The targeted attack was a phishing attempt against

an e-mail address found on an ICS honeypot. The phishing attempt targeted the Windows

computer, not the ICS device and was designed to exfiltrate data if successful. Wilhoit

called it a targeted ICS attack because it targeted an email address found on his honeypot,

but he does not detail how attackers could only have found this email address by targeting

his honeypot.
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2.3.2 Shodan Impacts on ICS devices Pre/Post Indexing.

The 2014 research conducted by Roland Bodenheim sought to determine Shodan’s

impact on ICS devices by measuring the change in network activity on an ICS honeypot

after it was indexed by Shodan [5]. His research used TCP connections, TCP packet

count, and number of unique IPs interacting with the device as metrics to quantify a

change in network activity. His research also focused on detecting targeted attacks against

Shodan indexed ICS devices by inspecting traffic at the honeypots against known ICS attack

signatures.

Bodenheim deployed a honeynet consisting of four Allen-Bradley PLCs using Internet-

facing IP addresses. Two of the devices were configured with default authentication settings

to mimic newly deployed devices, while the other two PLCs were configured to modify the

service banner responses to Shodan requests. One of the modified banners replaced the

string ‘Server: GoAhead-Webs’ with a random string to avoid detection, and the other

modified banner had the original string replaced with ‘Allen Bradley ControlLogix 1756’

in an attempt to make it easier to detect using a targeted Shodan search query. All four

devices were loaded with ladder logic and deployed for 55 days at the site of an ICS inte-

grator.

The first of the honeypots was indexed by Shodan after 3 days with all four honeypots

indexed by Shodan within 13 days. Bodenheim showed that linear trending and ‘goodness

of fit’ testing on network activity showed no evidence of any change to network activity

after a device is indexed by Shodan. In fact, a comparison of mean averages for network

activity metrics were all either below the 95% confidence interval, or could be attributed to

an increase in automated network scans not specifically targeting the ICS honeypots. This

indicated a lack of any statistical signifigance to the changes observed in network activity

pre and post indexing.
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Bodenheim used the Snort Intrusion Detection System (IDS) to check for targeted

attacks matching Snort and DigitalBond Quickdraw SCADA signatures specific to ICS

protocols. During the 55 day period, Snort identified only one high alert against one of the

four honeypots. The alert was found to be an indiscriminate scan for PHP vulnerabilities, a

service not used on the Allen-Bradley web server. While all four devices registered Snort

alerts, it was found that none of the alerts were ICS specific, and results from the Snort IDS

indicated that the activity was related to indiscriminate scans across public IP space, not

targeted attacks associated with Shodan indexing.

Wilhoit saw scanning, generic attacks, and a small number of Modbus-specific IDS

signature matches. Bodenheim saw no attacks on his PLCs even though his devices were

exposed for the same duration as Wilhoit’s first honeypots, attracting 39 attacks.

While no attacks to date have been directly attributed to Shodan searches, its existence

does provide an anonymous reconnaissance platform that may facilitate the targeting of ICS

devices for those actors with both a desire and capability to carry out attacks.

2.4 Related Work

A Rockwell Automations white paper [23] describes the recommended method to

compare CPU performance between L6x and L7x model CPUs. The Rockwell Task

Monitor utility measures CPU performance based on task execution times. The white paper

states that Task Monitor is compatible with all RSLogix5000 controllers version 13 and

above. The Task Monitor utility provides the means to request task execution times from a

PLC and measure changes while the PLC is operating under different loads. This approach

was used in two recent works to demonstrate CPU performance [10] [29].

Recent work performed by other researchers established methods used in this research

to obtain PLC information and test PLCs for increases in CPU utilization or system process

execution times. Stephen Dunlap in 2013 showed that analyzing timing characteristics of

PLC ladder logic execution can be used to detect modifications to firmware or ladder logic
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[10]. In his research, Dunlap developed a data collection mechanism to measure ladder

logic execution times. He determined that a sample rate of 250ms over the course of 10,000

samples provided sufficient data to test for statistically significant changes to ladder logic

execution times with a resolution of two microseconds.

Carl Schuett in 2013 expanded on Dunlap’s method to measure ladder logic execution

times as a part of performance analysis tools to measure process execution times [29].

Schuett added the capability to request process execution times for system processes

running on the PLC CPU to detect statistically significant changes in performance. Schuett

validated Dunlap’s sample rate and size in his research, and found that system services

must be sampled at a rate of 500ms to obtain valid results. Schuett uses the same one-

way permutation test as Dunlap with an alpha value of 0.0001 to accept or reject the null

hypothesis that there is no performance change between samples.

2.5 Conclusion

Shodan demonstrates that ICS devices are connected to the Internet, and much

research has been conducted recently to show that the number of ICS devices Shodan

indexes is growing. While this research focuses on numbers, no research has yet attempted

to qualify Internet-facing ICS devices by function, or try to determine what Shodan’s

impacts are to critical infrastructure. This chapter focused on the systems comprising

ICS networks and the current efforts to enumerate them using Shodan. In the following

chapter, this research will outline the methodology used to distinguish ICS devices indexed

by Shodan.
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III. Methodology

This chapter describes the methodology used to distinguish Internet-facing ICS devices

and conduct testing to ensure an ICS device under test is not impacted. Section 3.1

defines the problem of distinguishing ICS devices as it relates to this research. Section 3.2

describes the methodology used in this research. Section 3.3 describes the experimental

environment. Section 3.4 describes in detail the procedures used to collect data. Section

3.5 outlines the analysis methods that will be used in the following chapter to interpret the

data collected during experimentation.

3.1 Problem Definition

Shodan has been called “the scariest search engine on the planet” [13] due to the fact

that Shodan indexes response messages for a set of TCP/IP and application layer protocols

across the entire public IP address space. Since 2009, Shodan database queries have

revealed ICS devices are being connected to the internet using public-facing IP addresses

[19]. While the existence of ICS devices in the Shodan database has been examined by

many different researchers, no research addresses the risk those devices pose to critical

infrastructure. Many of the sensational news stories published regarding Shodan cite

the discovery of a control system for a wine cellar or publicly-accessible webcams [13],

however, no one has yet taken the steps necessary to determine the real threat to critical

infrastructure posed by ICS devices cataloged in Shodan’s database.

The goal of this research is to develop a method to distinguish Internet-facing ICS

devices indexed by Shodan based on PLC programming information.

Industry and governmental recommendations for secure ICS network design specify

methods to prevent direct Internet connections [20]. Leverett’s work has shown that despite

the recommendations, ICS devices are continuing to be connected directly to the Internet.
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Related work quantifies Internet-facing ICS devices, but cannot answer the question “Why

are these devices connected to the Internet?” This research attempts to answer that question

by distinguishing Internet-facing ICS devices based on PLC programming information.

This research defines PLC programming information as the Task, Program, Routine, and

Tag names used by ICS engineers to program PLC code. Allen-Bradley PLCs using the

CIP protocol return these names as strings in response to CIP attribute requests. Static

analysis techniques are used to distinguish these strings as either process control terms or

indeterminate. PLC code containing process control terms indicates the device is likely to

be controlling a physical industrial process.

This research evaluates two primary objectives:

1. Evaluate the impact of collection methods on Allen-Bradley PLCs by measuring

PLC code and system service execution times. This research defines impact as a

measurable, statistically significant increase in task execution time caused by the

collection methods developed in this chapter.

2. Collect PLC programming information from Internet-facing Allen-Bradley PLCs and

distinguish each device based on matching PLC code to process control terms.

3.2 Approach

The goal of this research is to determine a method for distinguishing Internet-facing

ICS devices that are controlling processes without impacting PLC task execution time.

This section describes the general methodology used to evaluate PLC impacts during

code collection, script development that automates the request process given a list of ICS

devices, and the segregation of ICS devices by the presence of process control terms.

The proposed method of distinguishing Internet-facing ICS devices is shown in Figure

3.1. This section concludes with the explanation of performance analysis methods used in

this research to determine PLC code collection impacts on PLC task execution times.
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Figure 3.1: Process to Distinguish Internet-facing ICS Devices.

3.2.1 Evaluating Collection Impact on PLCs.

Availability is critical to the secure and safe operation of any ICS network. The

methods used to collect data in this research must not degrade PLC performance to the

point where task execution times are significantly impacted.

Exploratory testing demonstrates the CIP protocol can be reverse engineered and a

python script can replicate the RSLogix5000 Upload process to receive PLC code from an
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Internet-facing device. EtherNet/IP and CIP protocols are used to send attribute requests

to the PLC, and responses are parsed and analyzed. The results of exploratory testing are

discussed in detail in Chapter 4.

Collecting PLC code form Internet-facing ICS devices must not impact the device’s

operation. Impact is defined as a statistically significant increase in task execution time.

Experimentation on ICS devices in a controlled environment provides the means to develop

non-invasive data collection methods and measure performance metrics to determine

impacts on ICS devices. Tests measure task execution times during requests for PLC code.

During these experiments, user task execution times should not see a significant increase.

Exploratory testing confirms that the Python scripts are able to collect PLC code from an

ICS device. Testing is conducted measuring the task execution times to ensure ICS device

performance is not negatively impacted. During this testing, four different PLC CPUs are

tested, each with three firmware versions. During exploratory testing, firmware versions

are cataloged to develop a better understanding of Allen-Bradley PLCs connected to the

Internet. For each CPU, it is tested with firmware ranging from oldest to newest found on

Internet-facing devices. Measuring PLC impacts during code collection determines if this

method is feasible for employment on a set of Internet-facing PLCs indexed by Shodan.

3.2.2 PLC Code Collection Script Development.

This research builds on the code developed by Dunlap that crafts EtherNet/IP and CIP

packets requesting PLC code attributes [10][29]. Dunlap’s script written for the Python

interpreter version 2.7 obtains a Connection ID from the PLC used in connection-oriented

commands. The connection manager provides routing for messages from the EtherNet/IP

module, across the chassis backplane, to the CPU installed in its respective slot.

Code collection is established by replicating the process RSLogix 5000 uses to collect

PLC code: register a session, establish a connection, send the appropriate series of Get

Attribute List commands iterating over all global and program-specific instance values.
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CompactLogix PLCs are designed so that the CPU always populates slot 0, however

ControlLogix PLCs are more customizable and the CPU can be located in any slot on the

backplane. Since the EtherNet/IP Forward Open request requires the CPU path, a method

for determining the processor type and slot is required.

3.2.2.1 EtherNet/IP Connection Setup.

The 1756-ENBT module hosts a web server with Diagnostic Web Pages used primarily

for troubleshooting network connections. One of the Diagnostic Web Pages lists all devices

populated in the chassis by slot number shown in Figure 3.2. The collection process for a

list of Internet-facing ICS devices returned by Shodan is automated by use of web-scraping

techniques. These techniques make an HTTP GET request for the Diagnostic Web Page

and search the web page source code for the processor type and slot. This information is

then returned and is used in the EtherNet/IP Forward Open request message.

Figure 3.2: PLC Code Program-Specific Instance Request and Response.

3.2.2.2 CIP Attribute Requests.

Five functions are added to the python script in order to collect the PLC code shown

in Figure 3.3. The first function creates a CIP message using the CIP service 0x4B Get

Attribute List with a class value of 0x6B and an instance value of 0x00 to request all

global instance values. The response message is parsed to strip the first four of every eight

hex characters. These four hex characters represent a global instance value and the list
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of instance values are passed to the next function. The second function takes in the list

of global instance values and iterates over each value requesting a set of attributes. This

function uses the CIP service 0x03 Get Attribute List to request the instance attributes for

class 0x6B and a given instance value. The responses for each service request are parsed

into attributes and returned as a list of hex values.

Program instance values and attributes are collected in a similar manner with a

modification of the code to provide the request path pair for each global instance value

and an associated program-specific instance. The third function in our script uses the CIP

service 0x4B with class 0x68 and instance 0x00 to request a list of global program instance

values. Note that the global instances returned from the first request cannot be used to

obtain program-specific instances; RSLogix 5000 inserts this step requesting a new set of

class 0x68 global instance values. This is the reason that no association is made between the

global instance values returned by the first function and the global program instance values

returned by this function. The fourth function iterates over each global program instance

to obtain a set of program-specific instance values. This is the first message created using

a request path pair. The first class and instance used is class 0x68, instance 0x(global

program instance), class 0x6B, instance 0x00. As in other CIP requests, the message

requests the global program instance values (0x68,0x(global program instance))(0x6B,

0x00) associated with that specific program. The data field containing instance values

is parsed, stored as a list of program-specific instance values, and passed to the fifth

function. Finally, the CIP service 0x03 Get Attribute List request is sent for each program-

specific instance value. This function also uses a request path pair of class 0x68, 0x(global

program instance), 0x6B, 0x(program-specific instance). The script writes each response

in a comma separated value (csv) coded file for further static analysis.
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Figure 3.3: Flowchart depicting Global and Program-specific code collection.

3.2.3 Detecting Process Control Terms in PLC Programming Information.

The goal of static analysis on PLC code is to distinguish devices that are controlling

an operation in an industrial process from those where their function cannot be determined.

The tag names provide meaningful data for detecting process control terms. This research
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uses a set of PLC project files developed by an ICS integrator for a metropolitan wastewater

management system. Analyzing the wastewater project files, it is evident that engineers

use process control terms to label the programs and tags used in PLC code so that it

is readable and understandable. This permits static analysis of the PLC code obtained

in this research for the presence of process control terms. A process control term in

this research is defined as: a generally accepted terms widely used by ICS engineers to

describe industrial processes. Examples of process control terms are pump, generator,

start, HMI, and variations on each term (pump, pmp, pum1, pump01, etc.) Assuming that

ICS engineers code similarly and by reviewing the wastewater PLC code, it is expected to

find process control terms in the PLC code for ICS devices controlling industrial processes.

PLC code for each device is reviewed for the presence of process control terms. A list

of the terms used is included in Appendix 1. This is the method that allows devices to be

classified as Process Control or Indeterminate. The Process Control devices are selected

based on the existence of process control terms in their PLC code. Devices that do not

contain any process control terms are classified as indeterminate and separated from the

Process Control set.

After selecting the group of Process Control devices, the list is presented to a group of

Industrial Control Systems engineers for review. These industry experts are able to leverage

their experience and deep understanding of process control systems to validate devices in

the Process Control group and exclude any devices that contain process control terms, but

do not meet their expectations for a device controlling an industrial process.

The limitation to this method of classifying devices are the process control terms

themselves. It is possible that an engineer may use an odd naming convention for program

names or tags. Also, devices with PLC code written in a non-english language will

also avoid detection by this classification. In both cases, the device will be classified as

indeterminate.
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3.3 Environment

This section describes the testing environment constructed to measure performance

impacts to Allen-Bradley 1756-L61/L71 and 1769-L23E/L32E PLCs during PLC code

collection. Performance impact in this research is defined as a statistically significant

increase to user task execution times.

3.3.1 Architecture and Hardware.

The experiment setup for this research consists of a workstation, hub, and Allen-

Bradley PLC as shown in Figure 3.4 and Figure 3.5. The workstation depicted is a Dell

Precision 690 with dual Intel Xeon 3GHz processors, 8GB RAM, Windows 7 Enterprise

SP1 64-bit operating system. The workstation supports a Windows XP Virtual Machine

with 1 processor and 4 cores, 3GB RAM, 60GB hard drive, and a bridged network

connection to the test network. The workstation is connected to the PLC under test through

a Linksys 5 port workgroup hub and CAT-5 Ethernet cable. The two ControlLogix PLC

CPUs under test are the 1756-L61 and 1756-L71, both using the Allen-Bradley chassis

1756-A4 Series B, 1756-ENBT/A EtherNet/IP module v6.004, and Power Supply 1756-

PA75 Series B. The two CompactLogix PLC CPUs under test are the Allen-Bradley 1769-

L23E-QBFC1B Series A and Allen-Bradley 1769-L32E Series B. CompactLogix CPUs

tests utilized the same L23E power supply and housing for both the L23E and L32E

processor modules.

3.3.2 Software.

The workstation utilizes Wireshark Version 1.8.6 for packet capture on the test

network and VMWare Workstation 10.0.1 build-1379776 to run the Windows XP

Virtual Machine. The Virtual Machine has Rockwell Software installed that provides

communication and a programming interface to the PLCs under test. The Rockwell

Software used in this research is ControlFLASH v12.00.00 for firmware loading, RSLinx
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Figure 3.4: ControlLogix Experiment Architecture.

Figure 3.5: CompactLogix Experiment Architecture.

Classic Lite Revision 2.59.02 CPR 9 SR 5 for establishing a communications path to the

PLC under test, RSLogix5000 V19.01.00 CPR 9 SR 3 for the programming interface

and ability to upload and download project files to the CPU under test, and Logix5000
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Task Monitor Version 3.0.3.0 to perform logging of user and system task execution times.

Python scripts for this research use the Python 2.7.6 interpreter.

3.3.3 PLC Code collection tools.

Python scripts developed by Dunlap [10] for his research are modified to collect object

information for Tasks, Programs, Routines, and Tags in the project files loaded into the

CPU under test. Dunlap originally developed scripts that register a session and obtains a

Connection ID. Through reverse engineering the RSLogix5000 upload process, Python is

used to craft packets initiating Connected Send requests for PLC code.

3.3.4 Performance Analysis Tools.

CPU task execution time is measured using the user task and system service execution

times with and without the PLC code collection script running. Comparative analysis is

conducted between the two measurement sets to determine if a statistically significant

change in execution times is detected. This research uses Python classes developed in

Dunlap’s [10] research and modified by Schuett [29] to take measurements of execution

times and automate the project file download process. Measurements are taken every

500ms by means of a CIP request for execution times. The responses from these CIP

requests provide user task and system service execution times in microseconds. A sample

size of 120 measurements are taken for each level of CPU and firmware with and without

Python PLC code collection scripts running.

3.3.5 Implementation.

Implementation of this method occurs after determining the impact code collection

has on a device. Four different Allen-Bradley CPUs are tested for three firmware versions

to determine impact. CPUs that are not impacted by the PLC code collection method are

scanned using a Ubuntu Linux instance on the Amazon Web Services Elastic Compute

Cloud (EC2) Virtual Server in the Cloud. Amazon EC2 provides an Ubuntu Server 14.04

LTS instance using 1 CPU, 0.613GB of RAM, 8 GB storage, and a public IP.
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3.4 Experiment Design

This section details the design, implementation, and data collection used in this

research to obtain PLC code from ICS devices indexed in the Shodan search engine. The

data collection methods used in this research must not impact ICS device availability to

be considered acceptable for use against Internet-facing ICS devices. These experiments

show the impacts to a PLC in a test environment prior to data collection conducted on the

Internet-facing devices.

3.4.1 Experiment Setup.

A total of 30 sets of measurements are collected on each CPU. Baseline sets are

defined as a set of 120 task execution time measurements taken for a fixed CPU and

firmware level. Treatment sets are defined as a set of 120 task execution time measurements

taken for a fixed CPU and firmware level while a PLC code collection script is sending one

EtherNet/IP message to the CPU for each measurement cycle. Three firmware versions are

tested for each CPU. Five replications of baseline sets and five replications of treament sets

are recorded for each of the three firmware versions resulting in 30 total measurement sets.

Table 3.1 lists the firmware versions used in the experiment.

Table 3.1: Firmware Versions used in performance analysis testing.

Experiment Firmware Versions

Firmware 1756-L61 1756-L71 1769-L23 1769-L32

Low 16.56.47 20.11.59 17.7.63 16.23.15

Medium 19.11.56 20.12.79 18.12.57 17.12.64

High 20.11.59 20.13.81 19.11.16 20.13.81

Table 3.2 lists an example experiment setup before the entire list of 30 experiments

is randomized to reduce bias. The first column represents the run order prior to
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randomization. The second column lists the RSLogix5000 project file downloaded

automatically to the PLC. The logic in each project file is identical, however each project

file is matched to a specific firmware version. The fourth column lists the firmware version

flashed to the PLC and the fifth column indicates if the run is Baseline or Treatment. When

the workload value in the fifth column is zero, no code collection is performed during

measurement. When the workload value is 1, a child process spawns running the code

collection script in conjunction with measurements.

Each project file is a modification of the “Big” project file used in Dunlap and

Schuett’s research. The project files are modified by adding global tags to each project

file so that the PLC code collection scripts run for a period of time between 55 and 56

seconds.

3.4.2 PLC Execution Times.

Measurements are collected from the PLC using Dunlap and Schuett’s python script

which records task and system process execution times every 500ms. The script was

developed by reverse engineering RSLogix Task Monitor requests to the PLC for execution

times and validated on the 1756-L61 CPU. This research builds upon Dunlap and Schuett’s

work by reverse engineering the Task Monitor requests for the 1756-L71, 1769-L23, and

1769-L32 CPUs.

The requests are sent as CIP Command 0x6D unconnected send messages and routed

to the PLC CPU via the CIP Connection Manager. The data fields returned are parsed as

shown in Figure 3.6.

Task and system service execution times are recorded every 500ms for a total of 120

measurements, approximately 60 seconds. Each CPU is measured under three different

firmware versions replicated five times, once with the PLC code collection script running

and five times with no collection (baseline). This provides a total of 10 measurement sets

per firmware version or 30 measurements per CPU.
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Table 3.2: Listing of Experiment Runs for the 1756-L61 CPU.

Experimental Setup: L61
Run Project File Name Firmware Version Workload (B=0/T=1)
1 L61 20 11 59.ACD 20 11.bin 0
2 L61 20 11 59.ACD 20 11.bin 0
3 L61 20 11 59.ACD 20 11.bin 0
4 L61 20 11 59.ACD 20 11.bin 0
5 L61 20 11 59.ACD 20 11.bin 0
6 L61 20 11 59.ACD 20 11.bin 1
7 L61 20 11 59.ACD 20 11.bin 1
8 L61 20 11 59.ACD 20 11.bin 1
9 L61 20 11 59.ACD 20 11.bin 1
10 L61 20 11 59.ACD 20 11.bin 1
11 L61 19 11 16.ACD 19 11.bin 0
12 L61 19 11 16.ACD 19 11.bin 0
13 L61 19 11 16.ACD 19 11.bin 0
14 L61 19 11 16.ACD 19 11.bin 0
15 L61 19 11 16.ACD 19 11.bin 0
16 L61 19 11 16.ACD 19 11.bin 1
17 L61 19 11 16.ACD 19 11.bin 1
18 L61 19 11 16.ACD 19 11.bin 1
19 L61 19 11 16.ACD 19 11.bin 1
20 L61 19 11 16.ACD 19 11.bin 1
21 L61 16 23 16.ACD 16 56.bin 0
22 L61 16 23 16.ACD 16 56.bin 0
23 L61 16 23 16.ACD 16 56.bin 0
24 L61 16 23 16.ACD 16 56.bin 0
25 L61 16 23 16.ACD 16 56.bin 0
26 L61 16 23 16.ACD 16 56.bin 1
27 L61 16 23 16.ACD 16 56.bin 1
28 L61 16 23 16.ACD 16 56.bin 1
29 L61 16 23 16.ACD 16 56.bin 1
30 L61 16 23 16.ACD 16 56.bin 1

3.4.3 PLC Impact Experiments.

This experiment to measure impacts of code collection is conducted on a closed IP-

based network shown in Figure 3.4 and Figure 3.5. Each CPU is measured independent of

the other three CPUs.
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Figure 3.6: Task Monitor Graphical Interface shown with Wireshark CIP packet capture.

The procedure for downloading PLC code and taking execution time measurements is

used as follows:

1. Configure the list of experimental runs as shown in Table 3.2 ensuring to randomize

the list to reduce bias.

2. Begin the runexp.py script which automates project file download and task execution

time measurement.

3. Use ControlFLASH software to load the appropriate Firmware to the PLC as

identified by the runexp.py script.

4. Script loads the appropriate project file by replicating the RSLogix5000 download

process.

5. Script places the PLC in Remote Run mode.
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6. Script pauses for verification that controller is in Remote Run. Execution times will

not be recorded if PLC did not reach Remote Run state.

7. The PLC runs for 60 seconds before taking measurements to allow it to reach steady

state.

8. PLC code collection requests are made once each 500 millisecond measurement

cycle to record 120 measurements over a 60 second period. See Figure 3.7 for

collection sequence.

9. For treatment measurements, PLC code collection begins after a two second delay.

Code collection script sets up the EtherNet/IP connection with the PLC and then

sends one CIP request to the PLC per 500 millisecond measurement cycle.

10. PLC code collection stops approximately two seconds before measurement collec-

tion ends.

11. Verify task execution time measurements are valid before advancing the runexp.py

script to the next line specified in the configuration file.

This process as depicted in Figure 3.7 is replicated five times for a baseline

measurement and five times for a treatment measurement covering each CPU and firmware

version in the experiment for a total of 30 runs per CPU. The list of 30 runs is randomized

using the Random.Org List Randomizer to reduce the possibility of bias being introduced.

3.4.4 Visual Inspection of PLC Code.

The final process in this method of distinguishing Internet-facing ICS devices is the

classification of PLC code using process control terms. A visual inspection is condcuted

on the PLC code obtained from each device to identify well-known process control terms

listed in Appendix 1. The presence of these terms in PLC code is assumed to indicate that

the device is controlling an industrial process, and results in the device being classified as
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Figure 3.7: Measuring PLC Task Execution Times.

Process Control. When PLC code does not show the existence of process control terms, the

device is classified as Indeterminate. During testing, the visual inspection of PLC code is

performed to ensure PLC code collection scripts function properly and do no cause errors

in the code or on the PLC.

3.5 Evaluation

Impacting a PLC controlling an industrial process has the potential to result in personal

injury or have a devastating environmental or industrial impact. This research uses PLC

performance analysis methods used in previous work by Schuett and Dunlap. Their work

focused on detecting small changes in task execution times due to firmware or PLC code

modifications. Measurements are collected over a sixty second run to obtain sufficient

number of samples to perform statistical tests on the data. A total of 120 measurements are

taken in 500ms intervals.

The measurements collected during experimentation are analyzed using the Monte-

Carlo resampling technique. This is a nonparametric test that measures the effect of the

treatment on a sample. In this research, the sample is the baseline task execution time and

the treatment is the task execution times collected while the PLC code collection script is
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running. The 9999 Monte-Carlo resamplings provide a p-value which is used to accept or

reject a null hypothesis. The null hypothesis in this research is that there is no difference

between the sample and treatment populations. The p-value returned represents the percent

chance that the treatment value could have been obtained from the sample. If both the

sample and treatment populations are the same, the p-value will be 1. If the sample and

treatment populations are statistically different, the p-value will be below the chosen alpha

value of 0.05 to provide a 95% confidence interval.

3.6 Conclusion

The methodology outlined in this chapter is used to identify Internet-facing ICS

devices indexed by the Shodan search engine, obtain PLC code from those devices, and

classify the device as Process Control or Indeterminate. Further, the experimental design

measures the impact of PLC code collection on the ICS device in order to determine the

feasibility of using this method to collect from ICS devices in production. The results

of performance analysis and implementation of this methodology on Internet-facing ICS

devices is discussed in the following chapter.
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IV. Results and Implementation

This chapter describes the results obtained during exploratory testing, performance

evaluation, and implementation of the research methodology. Exploratory testing

details the reverse engineering of Allen-Bradley software and communications protocols.

The performance evaluation section details the results of experiments designed to determine

impact of PLC code collection on PLC task execution times. The implementation section

describes the results of implementing the methodology on Internet-facing Allen-Bradley

PLCs.

4.1 Exploratory Testing

This section describes the exploratory testing conducted to determine the CIP protocol

requests that return PLC programming information.

4.1.1 Reverse Engineering Allen-Bradley PLC Code CIP Requests.

Programming information stored in the PLC is uploaded to a computer using a vendor-

specific programming suite. In this research, a Windows XP Virtual Machine running

RSLogix 5000 software is connected to an Allen-Bradley 1756-L61 PLC CPU using a

1756-ENBT EtherNet/IP module. Both devices are connected using Private IP space on a

closed network. The environment for exploratory testing is shown in Figure 4.1.

Allen Bradley ControlLogix and CompactLogix PLCs use RSLogix 5000 for

programming design and configuration. RSLogix 5000 uses an Upload process to load

PLC code from a given PLC into the RSLogix 5000 interface. RSLogix 5000 uses CIP to

request PLC code from the device, and by reverse engineering the Upload process, data

packets are reconstructed which request PLC code from a device without using RSLogix

5000.
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Figure 4.1: Hardware configuration for exploratory testing.

Wireshark is used to observe network traffic between the Virtual Machine hosting

RSLogix 5000 software and an Allen-Bradley 1756-L61 CPU and 1756-ENBT EtherNet/IP

module. Wireshark parses the fileds contained in each CIP data packet, which aids in static

analysis.

RSLogix 5000 establishes an EtherNet/IP session with a PLC by executing the

EtherNet/IP protocol Register Session command. Once this command is sent to the PLC,

a session handle is returned and used in all subsequent communications between RSLogix

5000 and the PLC. The Register Session command is defined in Dunlap’s work [10] and

his code for registering an EtherNet/IP session and routing CIP messages to the PLC CPU

is used in this research.
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The CIP protocol is an object oreinted protocol that uses classes and instances to

describe data elements. PLC Tasks, Programs, Routines, and Tags are all referenced by a

specific class and instance value. Allen-Bradley RSLogix 5000 PLCs use the class 0x6B to

identify global data elements of PLC code such as Tasks, Programs, and Global Tags.

Observing RSLogix 5000 communications, the EtherNet/IP packet consists of the

EtherNet/IP header, CIP header, and data. Figure 4.2 shows the hex representation of

the EtherNet/IP packet used to request a list of nine attributes associated with the class and

instance values listed in the request path.

Figure 4.2: EtherNet/IP Packet.
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RSLogix 5000 first sends a CIP request to the PLC with a request path of Class 0x6B,

Instance 0x00 shown in Figure 4.3. The PLC responds with a CIP message listing the

instance values of all global data elements. The response message data field is where an

instance is represented by two bytes in little-endian formatting followed by an additional

two Null bytes as padding. Similar request messages are crafted with Class 0x6B and

a specific instance value which returns a data field for each instance containing a list of

instance attributes.

Figure 4.3: PLC Code Request for Global Instance Values.

At this point CIP requests transition from requesting instance values to requesting

attributes assigned to each specific instance. The first messages observed returning

attributes associated with PLC code are the pair of messages shown in Figure 4.4. Once the

global instance values have been obtained, CIP attribute requests iterating over all global

instance values return data fields for the nine attributes requested for each instance.
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Attribute 1 contains American Standard Code for Information Interchange (ASCII)

representations of each Task, Program, and Global Tag name. The Wireshark packet

capture shown in the bottom right of Figure 4.4 decodes the ASCII text and Task:task bravo

is visible.

Figure 4.4: PLC Code Global Instance Request and Response.

RSLogix uses a similar process to obatin program-specific names for Routines and

Program Tags as shown in Figure 4.5. RSLogix 5000 uses class and instance values for

program-specific data. The first request path pair of Class 0x68 Instance 0x2420 indicate

the request is for a program-specific item belonging to the global item (Instance Value

0x2420). The next request path pair of Class 0x6B Instance 0x00 indicates a request for

all instance values belonging to the elements belonging to the parent Global instance value

0x2420.
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Figure 4.5: PLC Code Request for Program-Specific Instance Values.

RSLogix 5000 sends CIP requests iterating over all returned program-specific instance

values to obtain the nine attributes for each program-specific Routine and Program Tag.

Attribute 1 contains the ASCII name of each Routine and Tag returned as shown in Figure

4.6.

Figure 4.6: PLC Code Program-Specific Instance Request and Response.

Each CIP request is a request for nine attributes associated with a instance value.

Attribute 1 is the ASCII string representing the name of the data element. Attribute 2 lists

the data type of each data element. Observation of global and program-specific responses
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identifies the values listed in Table 4.1. The fields for Attributes 3 through 9 are not readily

identifiable and it is unknown what data is represented by the values in these fields.

Table 4.1: Data Type Values found in Attribute 2 CIP Instance Responses.

Selection of RSLogix 5000 Data Types

Hex Value Data Type

0x00C4 DINT Tag

0x00C1 Boolean Tag

0x106D Routine

0x1070 Task

0x1068 Program

0x1069 Map (Global Tag)

0x107E Cxn (Global Tag)

The Get Attribute List command discussed above returns a list of nine attributes given

a global class and instance, or a program-specific class instance pair. It is important to note

that during exploratory testing, there is no method developed that successfully mapped a

program-specific instance back to a global instance. That is, a method for obtaining global

and program specific PLC code is established, however, that method cannot determine

which program-specific data elements are related to a global program. During static

analysis of the remaining attributes, the values for the third and fourth attributes change

each time a new project file is downloaded into the PLC. The fifth and sixth attributes only

have values when referencing a global or program specific tag, and the remaining three

attributes always contain a value of zero.
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4.1.2 Conclusion.

This section describes reverse engineering that allows development of python scripts

that replicate portions of the RSLogix 5000 Upload process. These scripts applied to

Internet-facing ICS devices obtain PLC code used in this methodology to distinguish

Internet-facing ICS devices. In order to implement these scripts on devices in production,

performance analysis testing is conducted to determine if these code collection scripts

impact PLC task execution times.

4.2 Performance Analysis Results

This section describes the results of experiments measuring impacts on PLC

performance resulting from PLC code collection on an Allen-Bradley PLC. The data

collected is defined in terms of statistical distribution, error conditions, outliers, group

mean, standard deviation, minimum, and maximum values.

4.2.1 Data.

PLC execution measurements are read into the R software package for statistical

analysis [10]. A total of 120 sets of measurements are recorded in microseconds with a

resolution of two microseconds. Execution times are reported from the PLC every 500

milliseconds over a 60 second test period. The PLC code collection script includes a

time.sleep(0.5) command in order to ensure only one request per measurement cycle is

sent to the PLC. This maximizes the speed of code collection while limiting the number of

CIP commands issued to the PLC CPU per cycle.

The results from execution time collection are not approximately normal as shown in

the Q-Q plot in Figure 4.7. This plot consists of data taken during the first baseline run

for the L61 CPU on version 16.56.47 firmware. The remaining runs measuring all CPUs

and firmware versions have similar Q-Q plots, therefore assuming the data is approximately

normal is not valid. The nonparametric Monte Carlo resampling test is used in this research

to obtain p-values.
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Figure 4.7: R Q-Q Plot of PLC Task Execution Times L61 v16.56.47.

Dunlap and Schuett identified outliers which may be caused by logical interrupts and

excluded them from statistical analysis. The PLC execution times in their research are

stable since the PLC is executing code without any external influences. Dunlap and Schuett

noted that some execution times are well outside the normal variance and investigating

due to software interrupts in the PLC scheduling algorithm causing artificial delays in

code execution times. Outliers in this data set appear in a similar manner observed in

Dunlap and Schuett’s research; however, this research counts them as valid measurements.
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A key difference between the work done by Dunlap and Schuett and this research is the

measurement of a treatment on the sample data set. The effect that a CIP packet has on

the CPU cannot be distinguished from the effect a software interrupt has on the CPU.

Therefore, outliers are included in statistical analysis for this research.

Boxplots shown in Figure 4.8 depict the five Baseline runs (B1-B5) and five Treatment

runs (T1-T5) for the L61 CPU on version 16.56.47 firmware. The boxplots are a graphical

depiction of the data distribution. The solid lines in each box depict the median value

and the box itself encompass the 25th to 75th percentiles of the data in each set of

measurements. If each replication is stable and predictable, boxplots one through five

would have similar means and quantiles, and boxplots six through ten would be similar

to each other as well. Measurements show that there is significant unequal variance in

the measurement of execution times among the replications of similar experiments. The

distribution of execution times for run T4 appear to be much smaller than the distribution

of execution times for run B1, even though run T4 had the treatment applied and run B1 is

a baseline measurement. The boxplot also shows the outliers which are plotted above the

top whisker line. While code collection cannot be eliminated as a contributor to outliers,

it is evident that there are a number of outliers present in the baseline measurements B1

through B5.

Looking more closely at a run with a small variance, a scatter plot of run B2 shows

the separation between PLC execution times with outliers. The scatter plot in Figure 4.9

shows the distribution of task execution time measurements with a solid line at the 3478

microsecond mark which corresponds to the top whisker shown in the Figure 4.8 boxplot.

Measurements above the red line in the scatter plot represent the outliers shown in the Run

B2 boxplot in Figure 4.8.

The differences in median and variance seen in the L61 version 16.56.47 boxplot and

scatterplot are common among the data sets measuring the three firmware versions for all
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Figure 4.8: Boxplots of PLC Task Execution Times L61 v16.56.47.

four CPUs. The statistical differences determined by one way Monte Carlo resampling are

discussed in the next section.

4.2.2 Non-parametric Statistical Analysis.

Statistical analysis for this data set uses the same one way permutation test used by

Dunlap and Schuett in their research. The permutation test does not rely on an assumption

that the data is approximately normal. The data collected in this research has been shown to
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Figure 4.9: Run B2 Scatter Plot for PLC Task Execution Times L61 v16.56.47.

be skewed and not normally distributed. The one way permutation with 9999 Monte-Carlo

resamplings is calculated using the Coin package in R.

The one way permutation test for differences in mean task execution times provides

a p-value which represents the percent chance that a random variable representing the

treatment set could come from the baseline set. When comparing the first run of the

baseline set to the first run of the treatment set, a p-value below the threshold value means

there is a statistically significant difference between the two sets. The threshold value

selected for this research is 0.05.
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4.2.3 Analysis.

The p-values obtained for each CPU/firmware combination show statistically signif-

icant differences among three of the four CPUs. Since the one way permutation function

tests for differences in the mean sample, some of the differences are due to faster, not

slower, task execution times. In those cases, the difference is noted, however it is not

considered an impact in this research.

The following subsections list tables containing p-values for each of the four CPUs

tested. The baseline runs are listed on the table’s vertical axis and are labeled B1 through

B5. The treatment runs are on the table’s horizontal axis and labeled T1 through T5. The

p-values listed in each Table are obtained from the one way permutation test comparing

the treatment runs to the baseline runs. P-values are listed in bold when they are below the

threshold value due to an increase in task execution time during the treatment run. P-values

are underlined when the permutation test measures a statistically significant difference in

means, however the treatment run executed faster than the baseline run.

Where statistically significant differences are shown, boxplots are included to illustrate

the variance in median, variance, quantile, and outlier values.

4.2.3.1 L61 CPU.

Table 4.2 lists the p-values obtained for the L61 CPU. Treatment 2, 3, and 4 all show

statistically slower runs when compared to Baseline runs 2, 4, and 5. Examining the

boxplot for this run in Figure 4.10, it is clear that Treatment 2, 3, and 4 fit within the

range of execution times returned in the Baseline runs. In fact, the run with the largest

execution times for this CPU and firmware is Baseline 3. Statistically faster runs are

detected comparing Treatment 1 with Baseline 1 and 3.
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Figure 4.10: Boxplot for L61 v19.11.56.

4.2.3.2 L71 CPU.

Table 4.3 lists the p-values obtained for the L71 CPU. None of the p-values indicate a

statistically significant increase in task execution times.

4.2.3.3 L23E CPU.

Table 4.4 lists the p-values obtained for the L23E CPU. Eight of the 25 p-values

returned for firmware version 17.7.63 show statistically longer task execution times.

Examining the boxplot in Figure 4.11 Baseline 5 has the third fastest task execution times

and lowest variance across all ten sets while Treatment 5 has one of the highest median and

3rd Quadrennial values among all ten sets. When these two sets are excluded, only one

of the remaining 20 p-values are below the selected threshold with slower task execution

times.
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Table 4.2: L61 Baseline vs. Treatment p-values (Bold indicates slower execution time).

1756-L61 P-values

Firmware version 16.56.47

T1 T2 T3 T4 T5

B1 0.710071007 0.385838584 0.220822082 0.087008701 0.860286029

B2 0.172017202 0.873787379 0.920192019 0.485248525 0.359835984

B3 0.468046805 0.627062706 0.412841284 0.182018202 0.828682868

B4 0.269426943 0.97839784 0.768376838 0.406840684 0.507150715

B5 0.922092209 0.253625363 0.130213021 0.04850485 0.619261926

Firmware version 19.11.56

T1 T2 T3 T4 T5

B1 0.01438924 0.872059554 0.738535269 0.847818191 0.291268318

B2 0.753083092 0.012227441 0.00246279 0.004025775 0.093014581

B3 0.003532936 0.54701249 0.918845547 0.80667756 0.130273047

B4 0.825904893 0.017721752 0.003962985 0.006263625 0.120199879

B5 0.927038441 0.021955656 0.004996289 0.007835988 0.143674488

Firmware version 20.11.59

T1 T2 T3 T4 T5

B1 0.608040308 0.694409633 0.59214477 0.704535777 0.066645462

B2 0.552817863 0.776946749 0.677119928 0.790750211 0.092981131

B3 0.671688605 0.653498384 0.555890695 0.661875626 0.064103369

B4 0.650188876 0.648850737 0.546769661 0.655479734 0.057078883

B5 0.484296053 0.859180663 0.7587753 0.876351546 0.116058067
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Table 4.3: L71 Baseline vs. Treatment p-values (Bold indicates slower execution time).

1756-L71 P-values

Firmware version 20.11.59

T1 T2 T3 T4 T5

B1 0.628762876 0.918891889 0.756875688 0.97379738 0.899289929

B2 0.98219822 0.765276528 0.848384838 0.606960696 0.570357036

B3 0.403840384 0.683468347 0.473547355 0.735473547 0.832683268

B4 0.411741174 0.696869687 0.498049805 0.746874687 0.842984298

B5 0.415041504 0.280928093 0.251525153 0.139113911 0.154515452

Firmware version 20.12.79

T1 T2 T3 T4 T5

B1 0.354835484 0.815881588 0.611161116 0.114611461 0.919191919

B2 0.819481948 0.656265627 0.177617762 0.391339134 0.441844184

B3 0.733573357 0.785178518 0.289428943 0.364836484 0.567256726

B4 0.848284828 0.654065407 0.182118212 0.436443644 0.443944394

B5 0.260826083 0.613461346 0.847084708 0.079607961 0.881588159

Firmware version 20.13.81

T1 T2 T3 T4 T5

B1 0.511351135 0.162716272 0.320632063 0.716271627 0.164116412

B2 0.218821882 0.659865987 0.320332033 0.102710271 0.617661766

B3 0.853685369 0.314931493 0.608160816 0.877087709 0.307430743

B4 0.303430343 0.820982098 0.453545355 0.150215022 0.801880188

B5 0.850185019 0.509750975 0.891889189 0.565756576 0.518451845

4.2.3.4 L32E CPU.

The L32E p-values in Table 4.5 show statistically significant differences for all three

firmware versions tested. Firmware 16.23.15 has 11 of 25 p-values below the selected
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Figure 4.11: Boxplot for L23E v17.07.63.

threshold, however 10 of the 11 have faster mean task execution times in the Treatment set

than in the Baseline set. The only p-value that indicates a statistically slower task execution

time in the Treatment set is the p-value comparing the fastest Baseline set (Baseline 2) to

the slowest Treatment set (Treatment 3).

Firmware 17.12.64 has eight of the 25 p-values below the selected threshold. All

eight below the threshold p-values are common to the Baseline 2, 4, and 5 sets and the

Treatment 1, 2, and 5 sets. The boxplot in Figure 4.12 shows that Baseline 2, 4, and 5 have

lower median values than the remaining two Baseline sets. Similarly, Treatment 1, 2, and

5 have the highest three median values. These treatment sets have statistically slower task

execution times when compared to the fastest Baseline sets, however, the range of values

in each of the Treatment sets are not outside what is observed in the Baseline sets.
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Table 4.4: L23E Baseline vs. Treatment p-values (Bold indicates slower execution time).

1769-L23E P-values

Firmware version 17.7.63

T1 T2 T3 T4 T5

B1 0.886988699 0 0.455445545 0.471947195 0.525352535

B2 0.062206221 0.02640264 0.169716972 0.133813381 0.01190119

B3 0.03780378 0.01360136 0.126212621 0.089108911 0.00420042

B4 0.155215522 0.0340034 0.323032303 0.281228123 0.04710471

B5 0.00180018 0.183718372 0.00730073 0.00360036 0

Firmware version 18.12.57

T1 T2 T3 T4 T5

B1 0.804880488 0.440844084 0.127912791 0.294729473 0.420442044

B2 0.709270927 0.525052505 0.164716472 0.371537154 0.503150315

B3 0.126712671 0.550755076 0.810181018 0.773877388 0.634963496

B4 0.308030803 0.95049505 0.439443944 0.805680568 0.97779778

B5 0.04280428 0.219321932 0.736573657 0.381338134 0.298629863

Firmware version 19.11.16

T1 T2 T3 T4 T5

B1 0.649164916 0.869386939 0.514851485 0.929592959 0.660566057

B2 0.799279928 0.734273427 0.442844284 0.924792479 0.567356736

B3 0.695069507 0.837583758 0.506550655 0.96649665 0.638363836

B4 0.619761976 0.907790779 0.546054605 0.894489449 0.705470547

B5 0.749074907 0.760376038 0.447344734 0.96539654 0.589458946

The boxplot for firmware version 20.13.81 shown in Figure 4.13 shows two common

groupings of task execution times. Baseline 1, 2, and 3 are comparable with Treatment 4
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Figure 4.12: Boxplot for L32E v17.12.64.

and 5 while Baseline 4 and 5 are comparable with Treatment 1, 2 and 3. When analyzed in

these two subgroups, all calculated p-values are above the selected threshold.

4.2.4 Discussion.

Three of the four CPUs tested exhibited statistically different outcomes comparing a

given Baseline run to a Treatment run. The experiments are performed with five replications

per Baseline and five replications per Treatment run. The boxplots of these runs show

differences within the five replications that are similar to the differences observed when

Baseline and Treatment runs are compared.

The PLC code collection script makes one CIP request to the PLC per measurement

cycle. This ensures the script places the lowest load possible on the CPU. The p-

values above demonstrate statistically significant differences among individual Baseline
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Figure 4.13: Boxplot for L32E v20.13.81.

or Treatment runs, however, none of the experiments demonstrate statistically significant

differences across more than nine of 25 calculated p-values.

During all 120 experiments, the PLC code collection script had a 100 percent success

rate collecting all PLC code from the PLCs under test. Major and minor PLC faults are not

detected or logged during data collection. Fault detection during code collection relies on

comparing the results of code collection against the PLC code downloaded into the PLC.

For each CPU and firmware version tested, the minimum and maximum values

measured for all five Baseline experiments approximates the minimum and maximum

values measured for all five Treatment experiments. The data fails to indicate an overall

statistically slower task execution time during code collection, therefore the code collection

scripts can be implemented on Internet-facing ICS devices.
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Table 4.5: L32E Baseline vs. Treatment p-values (Bold indicates slower execution time).

1769-L32E P-values

Firmware version 16.23.15

T1 T2 T3 T4 T5

B1 0.894689469 0.00020002 0.204620462 0.711871187 0

B2 0.171417142 0.0130013 0.01790179 0.093909391 0.00970097

B3 0.792979298 0.00010001 0.188318832 0.627462746 0.00050005

B4 0.718171817 0 0.433043304 0.874587459 0

B5 0.512251225 0 0.654365437 0.630563056 0

Firmware version 17.12.64

T1 T2 T3 T4 T5

B1 0.0180018 0 0 0 0

B2 0 0.0040004 0.757975798 0.498649865 0.02470247

B3 0.157715772 0.789378938 0.00120012 0.01370137 0.383338334

B4 0 0.00370037 0.98819882 0.355835584 0.02140214

B5 0.00010001 0.03090309 0.493449345 0.885888589 0.126512651

Firmware version 20.13.81

T1 T2 T3 T4 T5

B1 0.00050005 0 0.00050005 0.98659866 0.96969697

B2 0.02930293 0.01820182 0.04570457 0.185318532 0.193719372

B3 0.00170017 0.00040004 0.00280028 0.733073307 0.748974897

B4 0.398539854 0.315131513 0.561256126 0.00460046 0.00570057

B5 0.99469947 0.930493049 0.778077808 0.00080008 0.00080008
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4.3 Implementation Results

This section describes the results of implementing the methodology for distinguishing

ICS devices on a set of Internet-facing Allen-Bradley PLCs obtained from a Shodan search

query.

The process shown in Figure 3.1 is used to obtain a list of Internet-facing Allen-

Bradley PLCs, determine CPU and CPU slot for each device, collect PLC code, check

for errors, and distinguish PLCs by groups of Process Control and Indeterminate devices.

4.3.1 Identifying Internet-facing ICS devices.

Collecting PLC code from Internet-facing ICS devices begins with developing a list

of devices to interrogate. The search query used, “GoAhead index.html close”, is the

same used by Bodenheim in his research [5]. This query returns a list of Allen-Bradley

CompactLogix and ControlLogix PLCs that have been previously indexed by Shodan.

Shodan returns a list shown in Figure 4.14 that is parsed to obtain a list of 540 target

IP addresses.

Shodan responds to the query “GoAhead index.html close” with a list of indexed

Allen-Bradley CompactLogix and ControlLogix PLCs. Shodan lists IP addresses for

each device indexed along with the indexed response message matching the search query.

Shodan also allows registered users to access the Details view shown in Figure 4.15. The

Details view shows the service and response received for each instance Shodan indexed the

device. The figure shows the last two instances where the device responded to a Shodan

request on HTTP port 80, and also shows a response on EtherNet/IP port 44818. During the

course of this research, it was discovered that Shodan is indexing more ports and protocols

than those listed in its documentation. Port 44818 is not advertised as a port that Shodan

indexes, however, when entering the query “port:44818” into Shodan, a list is returned of

every Internet-facing device that responded to a Shodan request for port 44818. At the time

of this research, Shodan has indexed 3608 devices on port 44818.
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Figure 4.14: Process to Distinguish Internet-facing ICS Devices (Black boxes contain

redacted information).

Shodan also provides a fee-based service where search results are exported to an XML

file. The XML file returns a set of metadata on each device including location based on

on IP registration, last update, port and response message indexed, and IP address. The

XML file returned by Shodan for the query “GoAhead index.html close” listed 493 unique

IP addresses for indexed devices. The next step is to extract a list of IP addresses using a

simple python script that parses XML and writes IP addresses to a text file used to collect

Diagnostic Web Page data.
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Figure 4.15: Registered User Details view for an ICS device cataloged by Shodan (IP

addresses redacted).

4.3.2 Collecting Diagnostic Web Page Data.

A simple python script collects data from Diagnostic Web Pages on indexed PLCs.

Module type and firmware revision for CompactLogix devices is collected from the Home

page and the Browse Chassis page lists CPU, slot, and firmware version for ControlLogix
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devices. This information is parsed by the python script and written to a csv file used to

create four CPU-specific configuration files used to obtain PLC code. 200 of the 493 IPs

returned by Shodan are Internet-facing Allen-Bradley PLCs, with 167 being PLCs using

CPU families tested in this research: 1756-L6x, 1756-L7x, 1769-L23E, 1769-L32E/35E.

4.3.3 Collecting PLC Code.

The python scripts developed for code collection are CPU-specific because each

CPU returns data formatted in a different manner. PLC code collection scripts take in a

configuration file listing IP addresses for CompactLogix PLCs and IP address, processor

slot pairs for ControlLogix PLCs. Configuration files are taken from Diagnostic Web Page

information and randomized using the Random.Org List Randomizer. Each code collection

script sends EtherNet/IP messages to a device and logs response messages and PLC code

into csv files. The script writes the raw EtherNet/IP protocol response message, then parses

the data field and writes the ASCII text string found in Attribute 1.

The scripts log errors when no data is received from PLC code requests, and in three

cases responses are received with no data. These three devices are assumed to have no

ladder logic loaded into the PLC. Pilot testing shows that responses from these three devices

match responses received from a PLC without PLC code. These three devices are not

considered in the pool of error conditions.

During PLC code collection, 10 errors are recorded. One device did not respond to

any requests on port 80 or port 44818 and is assumed to be no longer connected to the

Internet. Eight devices resulted in a connection timeout error and one device resulted in a

connection refused error.

4.3.4 Distinguishing ICS Devices.

The names returned in Attribute 1 are reviewed by two researchers familiar with

process control systems and PLC programming. The panel visually inspects the PLC code

written for each device for process control terms. The presence of these process control
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terms is assumed to indicate the device is controlling an industrial process, and the device

is classified Process Control by the panel. The list of terms the panel identified in the

Process Control group are listed in Appendix 1.

After the panel review, the PLC code is delivered to an ICS Engineer for expert review.

The engineer was given instructions to review the PLC code and try to determine if it is

controlling an industrial process. The engineer was also asked to attempt to determine the

industrial sector that the device supports.

4.3.5 Analysis.

The panel’s results selected 91 devices as Process Control and 63 devices as

Indeterminate. This segregates the population of identified devices with 38% of Internet-

facing ICS devices classified as Indeterminate.

Expert analysis shows that it is possible to identify the specific sector associated with

a device using PLC code. The ICS engineer independently reviewing code selected 91

devices as Process Control, with a 100% match for each Process Control device selected

by the panel. The ICS engineer also classified the sector or industrial category of 65 of the

91 Process Control devices used. Figure 4.16 shows the results of categorizing devices by

sector. The results indicate that this method distinguishes ICS devices not only by function,

but by industrial sector, including critical infrastructure. CI sectors represented include

Water and Wastewater, Energy, Food and Agriculture, Transportation, and Commercial

Facilities.

4.4 Conclusion

Statistically significant differences are calculated when comparing individual runs,

however the range of values obtained from Treatment runs are within the observed values

obtained measuring Baseline runs. This demonstrates that making one CIP request per
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Figure 4.16: Sector/Industrial Category Distribution of Process Control Devices.

measurement cycle will not negatively impact task execution times on the PLC CPUs tested

in this research.
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V. Conclusions

5.1 Conclusions

This overall findings of this research shows that PLC code collected from an Internet-

facing ICS device does not significantly impact PLC task execution times, and the PLC

code returned from the device is useful in distinguishing the device as to its function in a

process control system. The initial detection rate of Process Control devices using a panel

of ICS researchers yielded a 54% selection of Process Control PLCs.

Subsequent analysis by an industry expert categorized the Process Control devices by

the sector or industrial category the device supports. This is an important and unexpected

capability provided by this methodology.

This research is exploratory in nature and the methods used for matching PLC code

with process control terms are very elementary. This indicates that this methodology can

be readily adapted to identify Internet-facing ICS systems.

5.2 Impact

This research demonstrates a significant impact to answering the question “So what?”

when trying to understand the risk associated with Internet-facing ICS devices. The

classification by panel reduced the pool of ICS devices by 46%. Further review by industry

experts classified the devices by the industrial sector supported.

This research demonstrates the ability to identify Internet-facing ICS devices

controlling physical industrial processes, and then classify those devices by the industrial

sector they support. Current research has focused on the quantity of Internet-facing ICS

devices. This research accomplishes its goal of distinguishing ICS devices based on PLC

code, and futher demonstrates a method to distinguish Internet-facing ICS devices by
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sector. This methodology establishes the ability to gain a deeper understanding of the

risk to critical infrastructure being incurred at the device level.

5.3 Recommendations

None of this research would be possible if PLC code could not be collected from

an Internet-facing device. The most important act ICS administrators can take is to

follow NIST recommendations and remove any Internet connections from their ICS

networks. Following NIST recommendations is currently voluntary, however, this should

not discourage ICS administrators from adhering to NIST recommendations.

Where Internet connections are determined to be a requirement by ICS administrators,

the employment of network security appliances such as firewalls is essential. One device

of the 164 interrogated returned a Connection Refused error message. It is likely that port

44818 is open on this device, however, a firewall is configured to block inbound traffic on

that port. This stopped the PLC code collection script from successfully getting any CIP

requests to the PLC.

Finally, the lack of authentication in the EtherNet/IP or CIP protocols allows the

scripts used in this research to send CIP commands to any Internet-facing PLC and have the

PLC execute those commands. While legacy equipment and procedures is at the core of ICS

security issues, an ICS application layer protocol with security features like authentication

built-in would dramatically increase the security of any ICS device which is able to be

discovered on an Internet connection.

5.4 Future Work

5.4.1 Machine Learning and Process Control Term Matching.

The exploratory nature of this research leaves room for improvement. Visually

inspecting code and qualitatively distinguishing Internet-facing ICS devices can be

improved by exploring the use of machine learning techniques to distinguish these devices.
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Future research can use machine learning to develop algorithms that use process control

terms to match PLC code and select devices based on different metric such as assigning

weight to the values of select process control terms or establishing a threshold value for a

minimum number of matched terms.

5.4.2 Distinguishing Internet-facing ICS Devices by Sector.

This research demonstrated the ability to use PLC code to distinguish Internet-facing

ICS devices by function and use industry experts to classify devices by sector. Further

research can make use of the methodology in this research and build sector-specific process

control term lists and explore the ability to identify other critical infrastructure sectors.

Industry experts use years of experience to make qualitative decisions supporting the

classification of these devices. Using current analytic methods such as machine learning

may provide automated methods of replicating those qualitative decisions.

Inferences cannot be made from this data alone. The ICS engineer called on 25 years

experience to categorize device by sector. The engineer is also limited by geographical

region and types of sectors supported. Further study is required to identify additional

factors in sector distribution. The data shows a large proportion of wastewater systems,

however the causal relationship cannot be determined. Allen-Bradley PLCs may be more

common in wastewater systems, or confirmation bias on the part of the ICS engineer may

have inflated the wastewater categorization count.

5.4.3 Determining Methodology Portability.

This researched focused solely on Allen-Bradley PLCs, however there are other

manufacturers of ICS devices represented in the Shodan search engine. Future research

can expand the scope of PLCs tested to determine if the results of this research’s success

rate translates for other manufacturer’s devices.
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5.5 Summary

Shodan demonstrated that despite popular belief, ICS devices are connected to the

Internet. Researchers and security professionals began enumerating ICS devices found

in Shodan and media reports started generating concern regarding possibilities of critical

infrastructure attacks on these Internet-facing devices. This research distinguishes the

function of Internet-facing ICS devices in regards to Internet-facing ICS devices. Using a

novel method to collect PLC programming information to distinguish PLCs, this research

is able to distinguish Internet-facing ICS devices by function and industrial sector.
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Appendix A: 1: Process Control Terms

Recycle_WW

Sludge_Transfer_Pumps

Flow_Totalizer_Cont

Well_Data_S6CP

Routine:B_Level_Controller

Routine:B_Mixer_Alarms

Routine:B_Pump_Alarms

Control

FCV_1010_High_Flow_SP

FCV_1010_Low_Flow_SP

Program_Control

Bell_Sounds_Before_P15_Moves

E_STOP_1ST_CONV

HMI_JOG_MAIN_SLAT_PB

Map:Controller

P17_Conveyor_Move_Complete

P3_READY_TO_XFER_TO_P5_PE5

PAUSE_MAIN_SLAT

RESPONSE_FROM_SMTP_SERVER

SAFETY_RESET

STACKER_DOOR_E_STOP

START_SWITCH_P1

VFD1_OUTPUT_VOLTAGE

VFD2_INPUT_VOLTAGE

Routine:VFD1_STATUS

Routine:_2_MAIN_CNTRL

Routine:_40_STRT_STOP

Routine:_61_STACKER

FIFO_CONTROL

PV_NOM_SPEED_DOWN_PB

PV_NOM_SPEED_UP_PB

PV_RECIPE_MOVE_UP_OS

VFD1_OUTPUT_WATTS

Auxilliary_Shut_Down

Engine_Pumps_Shut_Down

Remote_Reset_RedLion

Routine:AFR_Control_PID

Routine:Engine_Start_Stop_Run

Start_Fuel_Timer1

Cond_VFD_2_Bypass
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Condensing_SetPt_Calcs

Evap_16_Fan_Current_Relay

Evap_27_Fan_VFD_Run_Confirm

Floor_Heat_Control_Temp

Glycol_Tank_Temp

LT_Comp1_Current_Switch

LT_Comp1_Low_Pressure_Control

MT_Comp3_Crankcase_Heater

MOV1302_Open_Status

MOV301A_Closed_Status

P300_VFD_Frequency_Command

P300_VFD_Run_Command

SK205_ModbusTCP_Error_Code

Shipping_Oil_To_Sinclair_Active

Start_P301_Pump

CHILLER_SETPOINT

CONTAINER_CUT_SYSTEM_GALLONS

EMPTY_Water_Separator

Detergent_Tank_Prep_Timer

Flow_Meter_Control

MMI_SYRUP_TANK_START_FILL

Routine:FILLER

Routine:PID_FILLER

Cond_B1_VFD1_Bypass

Cond_B1_VFD_Run_Fans_1_3_5_7

AS_Lower_Final_Pallet_Stop

AS_Rbt_OK_to_Place

LD_Door_3_Open

LD_Door_Lock_2

OF_Enable_Pallet_Conveyor

Routine:H1_Conveyor

Routine:_SelectBufferLev

Alm_N1J_MotorStarterFlt

TPAControl_

CrPs_Flow_Low

CrPs_Flow_Scaled_AI

_PumpControl_Lag_Start_ONS

Routine:Motor_Operated_Valves

Routine:SBR_PumpControl

Z_DO_PMP0001_CommandStart

Z_ValueSlowScanFromScada

Routine:Booster_Processing

Routine:MTR_PUMPS_Valencia_Send
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Routine:Valencia_AO_PID_Out

Program:HartProgram

CribPump1

ChlorineLeakAlm1

Override

Routine:CribPumpControl

CribAutoToggle

A400_3_Jog

C111_AtSpeed

C111_Active

V100_2_AtSpeed

V101_Start

V102_2_Stop

Routine:PowerUpMain

Routine:PanelView

PV_PB_V106_2_Rev

PV_PB_V106_2_Fwd

COMP01_START_MODE

EC06_FAN2_OVERLOAD

EC06_FAN2_VFD_SPEED

Freezer1980_AU2C_2D_ENABLE_SW

P1_COND5_PUMP_PUMP_OFF

Infeed_Speed_Ratio

Packer_Run

PackerJogging

ServoDriveEnabled

VFD19_BottleTurner:I

VFD19_BottleTurner:O

Routine:Glue_Control

Routine:TrayControl

Skid_B_Backwash_Step4

pv_Aeration_Level_Setpoint3_Max

pv_Turbidity_Alarm_SP

Routine:Anoxic_Tank_Mixing_System

Routine:Aeration_Tank_Denite_Pump

Routine:SV_Solenoid_Control

Program:Conveyor_Control

Program:Traffic_Control

Program:Physical_IO

Routine:Car_Positioning

Routine:Deliver_Loads

Routine:Laser_Positioning

Auto_Car_Forward
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A_TurretDriveJogSpeed_WRT

B_TorqueRequired

HydraulicPumpKeepOnONS

RecipeTransferCancel

RollExtractorDownMessageBit

Routine:Cantilvered_Arm_Logic

Routine:Knives_Bed_Control

Center_Seal_Top_Pressure

FoldedFilm1_Brake_CV_Auto

FoldedFilm1_Brake_PID_OUT

Temp_PortSeal_when_TempOK

Routine:A01_PortSealSequence

DistanceinPRTuntoFinssesTun_HMI

Map:PF400_SprayBoothNorthwestRecircFan_VFD

Routine:Process_Message

Routine:VFD_Comms

ChilledWaterPump

CausticWastePump

Com_CDMA_Initiate

Com_Disable

Routine:RSP_PID_Routine

Enable_Full_Speed_Cmd

CC_COMMUNITOR_RUN

CC_GEN_RUN

CRWNCT_PMP1_RUN_DI

Flouride_Tank_Scale

Pumps_Start

Vent_Flouride

Routine:_010A_Tower_Control

Routine:_600B_Flouride_DT_Pump

Bridge_Opening

Ok_To_Open_Bridge

Routine:Watchdog

Bioxie_Tank_Filling_Latch

Map:WASTEWATER_PUMP_1

PLC_IO_Status_HMI_1

WASTEWATER_PUMP_1:O

WASTEWATER_PUMP_2:I

Routine:TRANSFER_SWITCH

Routine:FeedLine

Routine:_DefoamerPump

FCV2MSG

Program:FlowControlValve
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PUMP10_STOP

OUTLET_VALVE_OPEN_COMMAND

Routine:WASTE_TRANSFER

Program:E_STOP_ZONE_1

Routine:Interlock_Override

Routine:MotorControl_Z1

Routine:LakeWater_Pump_Speed

Routine:Scale_Analog_Outputs

Routine:Lead_pump_select

Routine:Wet_well_alarms

Routine:Aborting

Routine:ANIONIC_POLYMER_CTRL

BACKWASH_AVIVOEN

Routine:_713_Robot_1_Send_Data

Routine:_711_Robot_1_Cycle_Start

A21_Regulator_Position_Value

Routine:SCADA_Mapping

Batch_Control_Load_Valve_Open_Request

Routine:Rail_Loading

Routine:Modbus_Comms

Routine:M17_Heavies_Picking_Conveyor

Routine:Start_Up

Routine:System_Pause

Routine:B1_LOAD_XFR_ROUTINE

Routine:Filter_102_Auto_BW_mode_startup

Routine:F101_Backwash_pump

AutoSetSlowDown

Program:PIDExecution

Routine:F1_Backwash_Abort

Backwash1_Control

Routine:T2_BACKFLUSH

Routine:A15_Load_Control

M203_OK_TO_RUN

OverHead_One_Shot
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Appendix B: 2: List of Boxplots

Figure B.1: Boxplot for L61 v16.56.47.
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Figure B.2: Boxplot for L61 v19.11.56.

Figure B.3: Boxplot for L61 v20.11.59.
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Figure B.4: Boxplot for L71 v20.11.59.

Figure B.5: Boxplot for L71 v20.12.79.
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Figure B.6: Boxplot for L71 v20.13.81.

Figure B.7: Boxplot for L23E v17.7.63.
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Figure B.8: Boxplot for L23E v18.12.57.

Figure B.9: Boxplot for L23E v19.11.16.
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Figure B.10: Boxplot for L32E v16.23.15.

Figure B.11: Boxplot for L32E v17.12.64.
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Figure B.12: Boxplot for L32E v20.13.81.
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